Skip to main content
Log in

A novel class of ammonium assimilation mutants of the photosynthetic bacterium Rhodobacter capsulatus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nitrogen assimilation in Rhodobacter capsulatus has been shown to proceed via the coupled action of glutamine synthetase (GS) and glutamate synthase (GOGAT) with no measurable glutamate dehydrogenase (GDH) present. We have recently isolated a novel class of mutants of R. capsulatus strain B100 that lacks a detectable GOGAT activity but is able to grow at wild type rates under nitrogen-fixing conditions. While NH +4 -supported growth in the mutants was normal under anaerobic/photosynthetic conditions, the growth rate was decreased under aerobic conditions. Ammonium and methylammonium uptake experiments indicated that there was a clear difference in the ammonium assimilatory capabilities in these mutants under aerobic versus anaerobic growth. Regulation of expression of a nifH : : lacZ fusion in these mutants was not impaired. The possible existence of alternative ammonium assimilatory pathways is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F. Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129: 1001–1009

    Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293–300

    Google Scholar 

  • Brana AF, Paiva N, Demain AL (1986) Pathways and regulation of ammonium assimilation in Streptomyces clavuligerus. J Gen Microbiol 132: 1305–1317

    Google Scholar 

  • Bravo A, Mora J (1988) Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 170: 980–984

    Google Scholar 

  • Brown CM, Herbert RA (1977) Ammonia assimilation in members of the Rhodospirillaceae. FEMS Microbiol Lett 1: 43–46

    Google Scholar 

  • Caballero FJ, Cardenas J, Castillo F (1989a) Purification and properties of l-alanine dehydrogenase of the phototrophic bacterium Rhodobacter capsulatus E1F1. J Bacteriol 171: 3205–3210

    Google Scholar 

  • Cabellero FJ, Igeno I, Cardenas J, Castillo F (1989b) Regulation of reduced nitrogen assimilation in Rhodobacter capsulatus E1F1. Arch Microbiol 152: 508–511

    Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8: 130–132

    Google Scholar 

  • Chen C, VanBaalen C, Tabita RF (1987) DL-7-azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain 1F. J Bacteriol 169: 1114–1119

    Google Scholar 

  • Cullimore JV, Sims AP (1981) Occurrence of two forms of glutamate synthase in Clamydomonas reinhardtii. Phytochemistry 20: 597–600

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti Proc Natl Acad Sci USA 77: 7347–7351

    Google Scholar 

  • Johansson BC, Gest H (1976) Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol 128: 683–688

    Google Scholar 

  • Johansson BC, Gest H (1977) Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Eur J Biochem 81: 365–371

    Google Scholar 

  • Kranz RG, Haselkorn R (1985) Characterization of nif regulatory genes in Rhodopseudomonas capsulata using lac gene fusions. Gene 40: 203–215

    Google Scholar 

  • Lea PJ, Miflin BJ (1975) Glutamate synthase in Blue-Green algae. Biochem Soc Trans 3: 381–384

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71: 971–973

    Google Scholar 

  • Meynell GG, Meynell E (1965) Theory and practice in experimental bacteriology, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Moreno-Vivian C, Cejudo EJ, Cardenas J, Castillo F (1983) Ammonia assimilation pathways in Rhodopseudomonas capsulata E1F1. Arch Microbiol 136: 147–151

    Google Scholar 

  • Morsdorf G, Kaltwasser H (1989) Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae. Arch Microbiol 152: 125–131

    Google Scholar 

  • Naider F, Bohak Z, Yariv J (1972) Reversible alkylation of a methionyl residue near the active site of β-galactosidase. Biochemistry 11: 3202–3208

    Google Scholar 

  • Rapp BJ, Landrum DC, Wall JD (1986) Methylammonium uptake by Rhodobacter capsulatus. Arch Microbiol 146: 134–141

    Google Scholar 

  • Reitzer LJ, Magasanik B (1987) Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, l-alanine, and d-alanine. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C., pp 302–320

    Google Scholar 

  • Romero F, Quintero A, Roldan JM (1989) Role of glutamine as a direct co-repressor of glutamine synthetase in Rhodobacter capsulatus E1F1. FEMS Microbiol Lett 58: 111–114

    Google Scholar 

  • Shapiro BM, Stadtman ER (1970) Glutamine synthetase (Escherichia coli). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 17A. Academic Press. New York London, pp 910–922

    Google Scholar 

  • Sharak-Genthner BR, Wall JD (1985) Ammonium uptake in Rhodopseudomonas capsulata. Arch Microbiol 141: 219–224

    Google Scholar 

  • Tolxdorff-Neutzling R, Klemme J-H (1982) Metabolic role and regulation of l-alanine dehydrogenase in Rhodopseudomonas capsulata. FEMS Microbiol Lett 13: 155–159

    Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Ann Rev Biochem 47: 1127–1162

    Google Scholar 

  • Wall JD, Gest H (1979) Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata. J Bacteriol 137: 1459–1463

    Google Scholar 

  • Wallsgrove RM, Harel E, Lea PJ, Miflin BJ (1977) Studies on glutamate synthase from the leaves of higher plants. J Exp Bot 28: 588–596

    Google Scholar 

  • Weaver PF, Wall JD, Gest H (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105: 207–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghese, R., Wall, J.D. A novel class of ammonium assimilation mutants of the photosynthetic bacterium Rhodobacter capsulatus . Arch. Microbiol. 157, 361–366 (1992). https://doi.org/10.1007/BF00248682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248682

Key words

Navigation