Skip to main content
Log in

Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Monoxenic cultures of the anaerobic, endosymbiont-free ciliate Trimyema compressum were incubated with low numbers of Bacteroides sp. strain WoCb15 as food bacteria and two strains (DSM 3636 and 3637) of Methanobacterium formicicum, which originally had been isolated from the anaerobic protozoa Metopus striatus and Pelomyxapalustris. The ciliate which had lost its original endosymbiotic methanogens ingested both strains of M. formicicum. The methanogenic bacteria were found intact in large vacuoles in contrast to the food bacteria which were digested. Single methanogens were separated from the vacuoles and appeared surrounded by a membrane in the cytoplasm of the ciliate. After 2 months of incubation, the methanogenic bacteria still exhibited the typical bluish fluorescence and the new symbiotic association of M. formicicum and T. compressum excreted methane. Increasing the growth rate of the ciliates by large numbers of food bacteria resulted in a loss of the methanogenic bacteria, due to statistical outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer DB, Harris JE (1984) Methanogenic bacteria and methane production in various habitats. In: Barnes EM, Mead GC (eds) Anaerobic bacteria in habitats other than man. Symposium of the Society for Applied Bacteriology. Blackwell, Oxford

    Google Scholar 

  • Boone D, Bryant MP (1980) Propionate-degrading bacterium Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    Google Scholar 

  • Cappenberg TE (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek 40:285–295

    Google Scholar 

  • Doddema HJ, Vogels GD (1978) Improved identification of methanogenic bacteria by fluorescence microscopy. Appl Environ Microbiol 36:752–754

    Google Scholar 

  • Fujishima M, Görtz HD (1983) Infection of macronuclear Anlagen of Paramecium caudatum with the macronucleus-specific symbiont Holospora obtusa. J Cell Sci 64:137–146

    Google Scholar 

  • Goosen NK, Horemans AMC, Hillebrand SJW, Stumm CK, Vogels GD (1988) Cultivation of the sapropelic ciliate Plagiopyla nasuta Stein and isolation of the endosymbiont Methanobacterium formicicum. Arch Microbiol 150:165–170

    Google Scholar 

  • Görtz HD (1983) Endonuclear symbionts in ciliates. In: Jeon KW (ed) Intracellular symbiosis. Int Rev Cytol [Suppl] 14:145–176

  • Kandler O, König H (1978) Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol 118:141–152

    Google Scholar 

  • König H, Kralitz R, Kandler O (1982) Structure and modifications of pseudomurein in Methanobacteriales. In: Kandler O (ed) Archaebacteria. Fischer, Stuttgart, pp 179–191

    Google Scholar 

  • Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248:7724–7728

    Google Scholar 

  • McInerney M, Bryant MP, Hespell RB, Costerton JM (1981) Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty-acid oxidizing bacterium. Appl Environ Microbiol 41:1029–1039

    Google Scholar 

  • Müller M (1988) Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488

    Google Scholar 

  • Pfennig N (1978) Rhodocyclus purpureus gen. nov. and spec. nov., a ring-shaped vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288

    Google Scholar 

  • Reisser W, Meier R, Görtz HD, Jeon KW (1985) Establishment, maintenance, and integration mechanism of endosymbionts in protozoa. J Protozool 32:383–390

    Google Scholar 

  • Stumm CK, Gijzen HJ, Vogels GD (1982) Association of methanogenic bacteria with ovine rumen ciliates. Br J Nutr 47:95–99

    Google Scholar 

  • Van Bruggen JJA, Stumm CK, Vogels GD (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch Microbiol 136:89–95

    Google Scholar 

  • Van Bruggen JJA, Zwart KB, Van Assema RM, Stumm CK, Vogels GD (1984) Methanobacterium formicicum, an endosymbiont of the anaerobic ciliate Metopus striatus McMurrich. Arch Microbiol 139:1–7

    Google Scholar 

  • Van Bruggen JJA, Van Rens GLM, Geertman EJM, Zwart KB, Stumm CK, Vogels GD (1988) Isolation of a methanogenic endosymbiont of the sapropelic amoeba Pelomyxa palustris Greeff. J Protozool 35:20–23

    Google Scholar 

  • Vogels GD, Hoppe WF, Stumm CK (1980) Association of methanogenic bacteria with rumen ciliates. Appl Environ Microbiol 40:608–612

    Google Scholar 

  • Wagener S, Stumm CK, Vogels GD (1986) Electromigration, a tool for studies on anaerobic ciliates. FEMS Microbiol Ecol 38:197–203

    Google Scholar 

  • Wagener S, Pfennig N (1987) Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Arch Microbiol 149:4–11

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate-or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology. IXth edn, vol I. Williams & Wilkins, Baltimore London, pp 663–679

    Google Scholar 

  • Williams AG (1986) Rumen holotrich ciliate protozoa. Microbiol Rev 50:25–49

    Google Scholar 

  • Wolin MJ, Miller TL (1982) Interspecies hydrogen transfer: 15 years later. ASM News 48:561–565

    Google Scholar 

  • Zaiss U (1981) Seasonal studies of methanogenesis and desulfurication in sediments of the river Saar. Zbl Bakt Hyg, I Abt Orig C 2:76–89

    Google Scholar 

  • Zeikus JG, Winfrey MR (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107

    Google Scholar 

  • Zwart KB, Goosen NK, Van Schwijndel MW, Broers CAM, Stumm CK, Vogels GD (1988) Cytochemical localization of hydrogenase activity in the anaerobic protozoa Trichomonas vaginalis. Plagiopyla nasuta and Trimyema compressum. J Gen Microbiol 134:2165–2170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagener, S., Bardele, C.F. & Pfennig, N. Functional integration of Methanobacterium formicicum into the anaerobic ciliate Trimyema compressum . Arch. Microbiol. 153, 496–501 (1990). https://doi.org/10.1007/BF00248433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248433

Key words

Navigation