Journal of Applied Electrochemistry

, Volume 24, Issue 2, pp 166–178 | Cite as

Electrochemical copolymerization of aniline and para-phenylenediamine on IrO2-coated titanium electrode

  • C. -H. Yang
  • T. -C. Wen


Copolymerization of aniline (AN) and para-phenylenediamine (PPDA) was electrochemically performed by cyclic voltammetry on IrO2-coated titanium electrodes in 0.5m H2SO4. The cyclic voltammograms, with and without a middle peak at about 580 mV, can be produced by controlling the PPDA concentration in the aniline solution during polymer preparation. The peak at about 580 mV corresponds to the para-aminophenol/benzoquinoneimine (PAP/QI) redox couple and crosslinking sites. The mass of polymer deposited on an IrO2-coated titanium electrode is correlated with the polymer anodic peak current, which allows the rates of polymer deposition to be monitored by increases in the anodic peak current at various PPDA concentrations. SEM photographs show that the morphology of the polymer film depends dramatically on PPDA concentration. Stability test information can be used in generating an effective index to discern between the crosslinking and the PAP/QI reactions induced by PPDA. The linear relationship between the second redox process potential (E1/2), corresponding to the oxidation and reduction between polaronic emeraldine and pernigraniline in PPDA-modified PANI films, and pH, possesses a slope of about -120 mV/pH.


PANI Aniline Cyclic Voltammetry Copolymerization Polymer Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Letheby, J. Chem. Soc. 15 (1862) 161.Google Scholar
  2. [2]
    A. G. Green and A. E. Woodhead, ibid. 97 (1910) 2338.Google Scholar
  3. [3]
    A. G. MacDiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Mol. Cryst. Liq. Cryst. 121 (1985) 173.Google Scholar
  4. [4]
    J. C. Chiang and A. G. MacDiarmid, Synth. Met. 13 (1986) 193.Google Scholar
  5. [5]
    R. De Surville, M. Jozefowicz, L. T. Yu, J. Perichon and R. Buvet, Electrochim. Acta 13 (1968) 1451.Google Scholar
  6. [6]
    E. W. Paul, A. J. Ricco and M. S. Wrighton, J. Phys. Chem. 89 (1985) 1441.Google Scholar
  7. [7]
    E. Genies and C. Tsintavis, J. Electroanal. Chem. 195 (1985) 109.Google Scholar
  8. [8]
    A. Thyssen, A. Bogerding and J. W. Schultze, Makromol. Chem., Macromol. Symp. 8 (1987) 143.Google Scholar
  9. [9]
    U. Koenig and J. W. Schultze, J. Electroanal. Chem. 242 (1988) 243.Google Scholar
  10. [10]
    A. Diaz and A. Logan, ibid. 111 (1980) 111.Google Scholar
  11. [11]
    D. E. Stilwell and S. M. Park, J. Electrochem. Soc. 135 (1988) 2254.Google Scholar
  12. [12]
    D. E. Stilwell and S. M. Park, ibid. 135 (1988) 2491.Google Scholar
  13. [13]
    W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82 (1986) 2385.Google Scholar
  14. [14]
    W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem. 91 (1987) 5813.Google Scholar
  15. [15]
    J. C. Lacroix and A. F. Diaz, ibid. 135 (1988) 1457.Google Scholar
  16. [16]
    D. E. Stilwell and S. M. Park, ibid. 135 (1988) 2497.Google Scholar
  17. [17]
    S. K. Dhawan and D. C. Trivedi, J. Appl. Electrochem. 22 (1992) 563.Google Scholar
  18. [18]
    E. M. Genies, M. L. Lapkowski and J. F. Penneau, J. Electroanal. Chem. 249 (1988) 97.Google Scholar
  19. [19]
    D. M. Mohilner, R. N. Adams and W. J. Argersinger, J. Am. Chem. Soc. 84 (1962) 3618.Google Scholar
  20. [20]
    E. Galas and R. N. Adams, ibid. 84 (1962) 2061.Google Scholar
  21. [21]
    J. Bacon and R. N. Adams, ibid. 90 (1968) 6596.Google Scholar
  22. [22]
    Y. Wei, Y. Sun and X. Tang, J. Phys. Chem. 93 (1989) 4878.Google Scholar
  23. [23]
    V. Tsakova and A. Milchev, Electrochim. Acta 36 (1991) 1579.Google Scholar
  24. [24]
    P. Nunziante and G. Pistoia, ibid. 34 (1989) 223.Google Scholar
  25. [25]
    M. Gholamian and A. Contractor, J. Electroanal. Chem. 252 (1988) 291.Google Scholar
  26. [26]
    P. Herrasti and P. Ocon, J. Appl. Electrochem. 20 (1990) 640.Google Scholar
  27. [27]
    C. Mailhe-Randolph and J. Desilvestro, J. Electroanal. Chem. 262 (1989) 289.Google Scholar
  28. [28]
    S. Hackwood, W. C. Dautremont-Smith, G. Beni, L. M. Schiavone and J. L. Shay, J. Electrochem. Soc. 128 (1981) 1212.Google Scholar
  29. [29]
    T. C. Wen and C. C. Hu, ibid. 139 (1992) 2158.Google Scholar
  30. [30]
    S. Ardizzone, G. Fregonara and S. Trassatti, Electrochim. Acta 35 (1990) 263.Google Scholar
  31. [31]
    S. H. Glarum and J. H. Marshall, J. Electrochem. Soc. 134 (1987) 2160.Google Scholar
  32. [32]
    M. Lapkowski and E. M. Genies, J. Electroanal. Chem. 279 (1990) 157.Google Scholar
  33. [33]
    A. G. MacDiarmid, J. C. Chiang and A. F. Richter, Synth. Met. 18 (1987) 285.Google Scholar
  34. [34]
    R. L. Hand and R. F. Nelson, ibid. 125 (1978) 1059.Google Scholar
  35. [35]
    A. Lindenberger, In ‘Electronic Properties of Polymers and Related Compounds’ (edited by H. Kuzmary, M. Mehring and S. Roth), Springer-Verlag, New York (1985).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. -H. Yang
    • 1
  • T. -C. Wen
    • 1
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainan, Taiwan

Personalised recommendations