Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 2, pp 149–156 | Cite as

Preparation and characterization of thin films of LaNiO3 for anode application in alkaline water electrolysis

  • R. N. Singh
  • L. Bahadur
  • J. P. Pandey
  • S. P. Singh
  • P. Chartier
  • G. Poillerat
Papers

Abstract

LaNiO3 electrodes were prepared, in the form of thin films on platinum by the methods of spray pyrolysis and sequential coating of mixed metal nitrate solutions followed by thermal decomposition. The films were adherent and of p-type semiconducting. Cyclic voltammetric studies indicated the formation of a quasireversible surface redox couple, Ni(iii)/Ni(ii), on these films before the onset of oxygen evolution in 1 m KOH. The anodic Tafel slopes were ∼40 and ∼65 mV decade−1, on the sprayed LaNiO3 film and on the film obtained by a layer method, respectively. The reaction order with respect to OH was found to be 2.2 on the sprayed oxide film and 1.2 on the layer film. The sprayed oxide film was found to be electrocatalytically more active. It is suggested that the oxygen evolution reaction proceeds on both the film electrodes via the formation of the physisorbed H2O2 as an intermediate in the rate determining step.

Keywords

Oxygen Evolution Spray Pyrolysis Metal Nitrate Oxygen Evolution Reaction Water Electrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Wendt and G. Imarisio, J. Appl. Electrochem. 18 (1988) 1.Google Scholar
  2. [2]
    L. Brossard and J.-Y. Huot, ibid. 19 (1989) 882.Google Scholar
  3. [3]
    H. Wendt and H. Hofmann, ibid. 19 (1989) 605.Google Scholar
  4. [4]
    L. Chen and A. Lasia, J. Electrochem. Soc. 138 (1991) 3321.Google Scholar
  5. [5]
    D.E. Hall, ibid. 128 (1981) 740;Google Scholar
  6. [5a]
    D.E. Hall, ibid. 129 (1982) 310.Google Scholar
  7. [6]
    P. Rasiyah and A.C.C. Tseung, ibid. 130 (1983) 2384.Google Scholar
  8. [7]
    A. M. Couper, D. Pletcher and F.C. Walsh, Chem. Rev. 90 (1990) 837.Google Scholar
  9. [8]
    P. W. T. Lu and S. Srinivasan, J. Electrochem. Soc. 125 (1978) 1416.Google Scholar
  10. [9]
    A. C. C. Tseung and S. Jasem, Electrochim. Acta 22 (1977) 31.Google Scholar
  11. [10]
    L. M. Volchkova and A. I. Krasil'shchikov, Zh. Fiz. Khim. 23 (1949) 441.Google Scholar
  12. [11]
    S. Gottesfeld and S. Srinivasan, J. Electroanal. Chem. 86 (1978) 89.Google Scholar
  13. [12]
    T. A. Liederbach, A. M. Greenberg and V. H. Thomas, in ‘Modern Chlor-Alkali Technology’, Vol. 1, (edited by M. Coulter), Ellis Horwood, Chichester (1980) p. 145.Google Scholar
  14. [13]
    J. De Carvalho, G. Tremilliosi-Filho, L. A. Avaca and E. R. Gonzalez, Int. J. Hydrogen Energy 14 (1989) 161.Google Scholar
  15. [14]
    T. Kenjo, J. Electrochem. Soc. 132 (1985) 383;Google Scholar
  16. [14a]
    T. Kenjo, Electrochim. Acta 31 (1986) 76.Google Scholar
  17. [15]
    D. E. Hall, J. Appl. Electrochem. 14 (1984) 107.Google Scholar
  18. [16]
    P. Rasiah and A. C. C. Tseung, J. Electrochem. Soc. 130 (1983) 365.Google Scholar
  19. [17]
    C. Iwakura, A. Honji and H. Tamura, Electrochim. Acta 26 (1981) 1319.Google Scholar
  20. [18]
    R. N. Singh, J. F. Koenig, G. Poillerat and P. Chartier, J. Electrochem. Soc. 137 (1990) 1408.Google Scholar
  21. [19]
    R. Boggio, A. Carugati and S. Trasatti, J. Appl. Electrochem. 17 (1987) 828.Google Scholar
  22. [20]
    R. N. Singh, M. Hamdani, J. F. Koenig, G. Poillerat, J. L. Gautier and P. Chartier, J. Appl. Electrochem. 20 (1990) 442.Google Scholar
  23. [21]
    M. R. Tarasevich and B. N. Efremov, ‘Electrodes of Conductive Metallic Oxide’, Part A (edited by S. Trasatti), Elsevier, Amsterdam (1981) p. 221.Google Scholar
  24. [22]
    L. D. Burke and M. M. McCarthy, J. Electrochem. Soc. 135 (1988) 1175.Google Scholar
  25. [23]
    T. Otagawa and J. O'M. Bockris, J. Electrochem. Soc. 192 (1982) 2391.Google Scholar
  26. [24]
    Idem, J. Phys. Chem. 87 (1983) 2960.Google Scholar
  27. [25]
    J. O'M. Bockris, T. Otagawa and V. Young, J. Electroanal. Chem. 150 (1983) 633.Google Scholar
  28. [26]
    J. O'M. Bockris and T. Otagawa, J. Electrochem. Soc. 131 (1984) 290.Google Scholar
  29. [27]
    V. Matsumoto, H. Manabe and E. Sato, J. Electrochem. Soc. 127 (1980) 811.Google Scholar
  30. [28]
    A. G. C. Kobussen and C. M. A. M. Mesters, J. Electroanal. Chem. 115 (1980) 131.Google Scholar
  31. [29]
    E. J. M. O'Sullivan and E. T. Calvo, in ‘Comprehensive Chemical Kinetics’, Vol. 27, (Electrode Kinetic Reactions), (edited by R. G. Compton), Elsevier, Amsterdam (1987) p. 294.Google Scholar
  32. [30]
    A. C. C. Tseung and H. L. Bevan, J. Mater. Sci. 5 (1970) 604;Google Scholar
  33. [30a]
    J. Kelly, D. B. Hibbert and A. C. C. Tseung, J. Mater. Sci. 13 (1978) 1053;Google Scholar
  34. [30b]
    D. B. Hibbert and A. C. C. Tseung, J. Mater. Sci. 14 (1979) 2665.Google Scholar
  35. [31]
    G. Karlsson, J. Power Sources 10 (1983) 319.Google Scholar
  36. [32]
    V. Matsumoto and E. Sato, Denki Kagaku 51 (1983) 783.Google Scholar
  37. [33]
    A. Daghetti, G. Lodi and S. Trasatti, Mater. Chem. Phys. 8 (1983) 1.Google Scholar
  38. [34]
    L. Bahadur, M. Hamdani, J. F. Koenig and P. Chartier, Sol. Energy Mater. 14 (1986) 107.Google Scholar
  39. [35]
    G. Fiori, C. M. Mari, B. Perra, L. Vago and P. Vitali, EC Report EUR 6783, Hydrogen Energy Vector (1980), pp. 223–239 and references therein.Google Scholar
  40. [36]
    S. K. Tiwari, K. L. Anitha and R. N. Singh, J. Electroanal. Chem. 319 (1991) 263.Google Scholar
  41. [37]
    M. Hamdani, J. F. Koenig and P. Chartier, J. Appl. Electrochem. 18 (1988) 568.Google Scholar
  42. [38]
    R. F. Scarr, J. Electrochem. Soc. 116 (1969) 1526.Google Scholar
  43. [39]
    A G. C. Kobussen and G. H. J. Broers, J. Electroanal. Chem. 126 (1981) 221.Google Scholar
  44. [40]
    J. G. N. Thomas, Trans. Faraday Soc. 57 (1961) 1603.Google Scholar
  45. [41]
    R. Parsons, ibid. 54 (1958) 1053.Google Scholar
  46. [42]
    B. E. Conway and E. Gileadi, ibid. 58 (1962) 2493.Google Scholar
  47. [43]
    B. E. Conway and M. Salomon, Electrochim. Acta 9 (1964) 1599.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. N. Singh
    • 1
  • L. Bahadur
    • 1
  • J. P. Pandey
    • 1
  • S. P. Singh
    • 1
  • P. Chartier
    • 2
  • G. Poillerat
    • 2
  1. 1.Electrochemical Laboratory, Department of Chemistry, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Laboratoire d'Electrochimie et de Chimie-Physique du Corps Solide, URA au CNRS no. 405University Louis PasteurStrasbourgFrance

Personalised recommendations