Journal of Applied Electrochemistry

, Volume 24, Issue 2, pp 107–113 | Cite as

Oxidation of iodide to iodate concurrently with evolution of oxygen at Kelgraf composite electrodes

  • J. E. Vitt
  • D. C. Johnson


The oxidation of I to IO 3 in acidic media occurs at numerous electrode materials at potential values corresponding to the anodic discharge of H2O with simultaneous evolution of oxygen. In the study reported here the anodic current density for IO 3 production was measured by difference voltammetry at rotated disc electrodes (r.d.e.'s) constucted from pure glassy carbon (GC) and Kelgraf (graphite plus Kel-F) composite materials. These signal values (S) were normalized relative to the background current (B) for oxygen evolution measured at 1.75 V vs SCE, a potential corresponding to the transport-limited production of IO 3 at GC. Despite a small positive shift in E1/2 with decreasing fractional active area, the signal-to-background ratio (S/B) at the Kelgraf electrodes was enhanced relative to that for the GC electrode. For example, SIB at a 2% Kelgraf r.d.e. was nine times larger than at a GC r.d.e. This corresponds to an increase in current efficiency (S/(S + B)) for IO 3 production from about 50% at the GC r.d.e. to about 90% at 2% Kelgraf r.d.e. This is explained on the basis of (i) a significant decrease in total background current as a result of the decreased fraction of the Kelgraf surface that corresponds to carbon, and (ii) a larger flux density of I at the carbon microelectrodes in the Kelgraf r.d.e., as compared to the GC r.d.e., as a result of radial diffusion, i.e. the so-called ‘edge effect’.


Glassy Carbon Glassy Carbon Electrode Oxygen Evolution Current Efficiency Composite Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. P. Hoare, ‘The Electrochemistry of Oxygen’, John Wiley and Sons, New York (1968) p. 86.Google Scholar
  2. [2]
    J. O'M. Bockris, J. Chem. Phys. 24 (1956) 817.Google Scholar
  3. [3]
    S. Trasatti, J. Electroanal. Chem. 111 (1980) 125.Google Scholar
  4. [4]
    P. Ruetschi and P. Delahay, J. Chem. Phys. 23 (1955) 556.Google Scholar
  5. [5]
    J. E. Vitt and D. C. Johnson, J. Electrochem. Soc. 139 (1992) 774.Google Scholar
  6. [6]
    T. D. Cabelka, D. S. Austin and D. C. Johnson, ibid. 131 (1984) 1595.Google Scholar
  7. [7]
    D.S. Austin, D. C. Johnson, T. G. Hines and E. T. Berti, Anal. Chem. 55 (1983) 2222.Google Scholar
  8. [8]
    I.-H. Yeo, S. Kim, R. Jacobson and D. C. Johnson, J. Electrochem. Soc. 136 (1989) 1395.Google Scholar
  9. [9]
    W. R. LaCourse, Y.-L. Hsiao, D. C. Johnson and W. H. Weber, ibid. 136 (1989) 3714.Google Scholar
  10. [10]
    H. Chang and D. C. Johnson, ibid. 137 (1990) 2452.Google Scholar
  11. [11]
    H. Chang and D. C. Johnson, ibid. 136 (1989) 17.Google Scholar
  12. [12]
    S. Pons and M. Fleischmann, Anal. Chem. 59 (1987) 1391A.Google Scholar
  13. [13]
    R. M. Wightman and D. O. Wipf, ‘Electroanalytical Chemistry’, Vol. 15, (edited by A. J. Bard), Marcel Dekker, New York (1989) pp. 267–353.Google Scholar
  14. [14]
    D. E. Tallman and S. L. Petersen, Electroanal. 2 (1990) 499.Google Scholar
  15. [15]
    D. E. Weisshaar and D. E. Tallman, Anal. Chem. 55 (1983) 1146.Google Scholar
  16. [16]
    J. E. Anderson, D. E. Tallman, D. J. Chesney and J. L. Anderson, ibid. 50 (1978) 1051.Google Scholar
  17. [17]
    J. E. Anderson, J. B. Montgomery and R. Yee, ibid. 63 (1991) 653.Google Scholar
  18. [18]
    J. L. Anderson and D. J. Chesney, ibid. 52 (1980) 2156.Google Scholar
  19. [19]
    D. J. Chesney, J. L. Anderson, D. E. Weisshaar and D. E. Tallman, Anal. Chim. Acta 124 (1981) 321.Google Scholar
  20. [20]
    D. E. Weisshaar, D. E. Tallman and J. L. Anderson, Anal. Chem. 53 (1981) 1809.Google Scholar
  21. [21]
    D. E. Tallman and D. E. Weisshaar, J. Liq. Chromatogr. 6 (1983) 2157.Google Scholar
  22. [22]
    J. L. Anderson, K. K. Whiten, J. D. Brewster, T-Y. Ou and W. K. Nonidez, Anal. Chem. 57 (1985) 1366.Google Scholar
  23. [23]
    T-Y. Ou and J. L. Anderson, ibid. 63 (1991) 1651.Google Scholar
  24. [24]
    J. E. Vitt, D. C. Johnson and D. E. Tallman, ibid. 65 (1993) 231.Google Scholar
  25. [25]
    V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962) p. 75.Google Scholar
  26. [26]
    R. Mills and V. M. M. Lobo, ‘Self-Diffusion in Electrolyte Solutions’, Elsevier, New York (1989) p. 318.Google Scholar
  27. [27]
    G. Milazzo and S. Caroli, ‘Tables of Standard Electrode Potentials’, John Wiley & Sons, New York (1978).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • J. E. Vitt
    • 1
  • D. C. Johnson
    • 2
  1. 1.Department of ChemistryUniversity of South DakotaVermillionUSA
  2. 2.Department of Chemistry and Ames LaboratoryIowa State UniversityAmesUSA

Personalised recommendations