Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 2, pp 95–106 | Cite as

Studies of three-dimensional electrodes in the FMO1-LC laboratory electrolyser

  • C. J. Brown
  • D. Pletcher
  • F. C. Walsh
  • J. K. Hammond
  • D. Robinson
Papers

Abstract

A FMO1-LC parallel plate, laboratory electrochemical reactor has been modified by the incorporation of stationary, flow-by, three-dimensional electrodes which fill an electrolyte compartment. The performance of several electrode configurations including stacked nets, stacked expanded metal grids and a metal foam (all nickel) is compared by (i) determining the limiting currents for a mass transport controlled reaction, the reduction of ferricyanide in 1 m KOH and (ii) measuring the limiting currents for a kinetically controlled reaction, the oxidation of alcohols in aqueous base. It is shown that the combination of the data may be used to estimate the mass transfer coefficient, κL, and the specific electrode area, Ae, separately. It is also confirmed that the use of three dimensional electrodes leads to an increase in cell current by a factor up to one hundred. Finally, it is also shown that the FM01-LC reactor fitted with a nickel foam anode allows a convenient laboratory conversion of alcohols to carboxylic acids; these reactions are of synthetic interest but their application has previously been restricted by the low rate of conversion at planar nickel anodes.

Keywords

Foam Mass Transfer Coefficient Ferricyanide Metal Foam Nickel Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Ae

electrode area per unit electrode volume (m2m−3)

c

bulk concentration of reactant (mol m−3)

E

electrode potential vs SCE (V)

E1/2

half wave potential (V)

F

Faraday constant (96 485 C mol−1)

I

current (A)

IL

limiting current (A)

jL

limiting current density (A m−2)

κL

mass transfer coefficient (m s−1)

n

number of electrons transferred

p

empirical constant in Equation 2

ΔP

pressure drop over reactor (Pa)

R

resistance between the tip of the Luggin capillary and the electrode surface (Ω)

q

velocity exponent in Equation 2

ν

(interstitial) linear flow rate of electrolyte (ms−1)

Ve

volume of electrode (m3)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. S. Newman and W. Tiedeman, Adv. Electrochem. & Electrochem. Engng., 11 (1978) 353.Google Scholar
  2. [2]
    F. Coeuret, J. Appl. Electrochem. 10 (1980) 687.Google Scholar
  3. [3]
    G. Kreysa, Metalloberflache 35 (1981) 6.Google Scholar
  4. [4]
    R. E. Sioda and K. B. Keating, Electroanal. Chem. 12 (1982) 1.Google Scholar
  5. [5]
    F. Goodridge and A. R. Wright, in ‘Comprehensive Treatise of Electrochemistry’, Vol. 6’, (edited by J.O'M. Bockris, B. E. Conway, E. Yeager and R.E. White), Plenum, London (1983) p. 393.Google Scholar
  6. [6]
    B. Fleet, Coll. Czech Chem. Comm. 53 (1988) 1107.Google Scholar
  7. [7]
    D. Pletcher and F. C. Walsh, in ‘Electrochemical Technology for a Cleaner Environment, (edited by J. D. Genders and N.L. Weinberg), The Electrosynthesis Co., Lancaster, NY. (1992) p. 51.Google Scholar
  8. [8]
    D. Pletcher and F. C. Walsh, Industrial Electrochemistry, Chapman & Hall, London (1990).Google Scholar
  9. [9]
    D. Pletcher, I. Whyte, F. C. Walsh and P. J. Millington, J. Appl. Electrochem. 21 (1991) 659.Google Scholar
  10. [10]
    D. Simonsson, J. Appl. Electrochem. 14 (1984) 595.Google Scholar
  11. [11]
    D. Robinson, in ‘Electrosynthesis — from Laboratory, to Pilot, to Production’, (edited by J. D. Genders and D. Pletcher), The Electrosynthesis Co., Lancaster, NY. (1990) p. 219.Google Scholar
  12. [12]
    C. J. Brown, D. Pletcher, F. C. Walsh, J. K. Hammond and D. Robinson, Dechema monographs, ‘Electrochemical Cell Design and Optimisation Procedures’, 123, (1991) p. 299.Google Scholar
  13. [13]
    C. J. Brown, D. Pletcher, F. C. Walsh, J.K. Hammond and D. Robinson, J. Appl. Electrochem. 23 (1993) 38.Google Scholar
  14. [14]
    C. J. Brown, D. Pletcher, R. C. Walsh, J. K. Hammond and D. Robinson, ibid. 22 (1992) 613.Google Scholar
  15. [15]
    M. Fleischmann, K. Korinek and D. Pletcher, J. Electroanal. Chem. 31 (1971) 39.Google Scholar
  16. [16]
    Idem, J. Chem. Soc. PerkinII (1972) 1396.Google Scholar
  17. [17]
    P. M. Robertson, Electrochim. Acta 22 (1977) 411.Google Scholar
  18. [18]
    H. J. Schäfer, Topics in Current Chemistry 141 (1987) 101.Google Scholar
  19. [19]
    F. Leroux and F. Coeuret, Electrochim. Acta 30 (1985) 519.Google Scholar
  20. [20]
    S. Langlois and F. Coeuret, J. Appl. Electrochem. 19 (1989) 51.Google Scholar
  21. [21]
    F. Leroux and F. Coeuret, Electrochim. Acta 30 (1985) 167.Google Scholar
  22. [22]
    S. Langlois and F. Coeuret, J. Appl. Electrochem. 19 (1989) 43.Google Scholar
  23. [23]
    D. Pletcher, I. Whyte, F. C. Walsh and J. P. Millington, J. Appl. Electrochem. 21 (1991) 659.Google Scholar
  24. [24]
    G. W. Reade and F. C. Walsh, unpublished results.Google Scholar
  25. [25]
    G. Vertes, G. Horanyi and F. Nagy, Tetrahedron 28 (1972) 37.Google Scholar
  26. [26]
    K. Manandhar and D. Pletcher, J. Appl. Electrochem. 9 (1979) 707.Google Scholar
  27. [27]
    P. M. Robertson, P. Berg, H. Reimann, K. Schleich and P. Seiler, J. Electrochem. Soc. 130 (1983) 591.Google Scholar
  28. [28]
    P. Cox and D. Pletcher, J. Appl. Electrochem. 20 (1990) 549.Google Scholar
  29. [29]
    Idem, ibid. 21 (1991) 11.Google Scholar
  30. [30]
    K. H. Schwarz, K. Kleiner, R. Ludwig, E. Schrötter and H. Schick, Liebigs. Ann. Chem. (1991) 503.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • C. J. Brown
    • 1
  • D. Pletcher
    • 1
  • F. C. Walsh
    • 2
  • J. K. Hammond
    • 3
  • D. Robinson
    • 3
  1. 1.Department of ChemistryUniversity of SouthamptonSouthamptonGreat Britain
  2. 2.Department of ChemistryUniversity of PortsmouthPortsmouthGreat Britain
  3. 3.Research and Development DepartmentICI Chemicals & Polymers LimitedCheshireGreat Britain

Personalised recommendations