Skip to main content
Log in

Approaches for submicrosequencing

  • Techniques of Macromolecular Chemistry
  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

From a conventional SDS-acrylamide gel plate, protein (≈1 μg), even after staining by dye, was extracted with 70% formic acid and purified by Biogel P-10 column chromatography in 70% formic acid. The recovery was 60–99% and the protein purified by this method was free from SDS, dyes, glycine, and buffer salts and ready to use for protein composition and sequence studies. The method can avoid the protease digestion of the protein that has often been observed in the electroelution method. For amino acid analysis, protein was hydrolyzed with a gas of a HCL/trifluoroacetic acid/H2O mixture at 158°C for 22.5 and 45 min to avoid contamination (less than 1 pmole). The method provided sufficient hydrolysis even for hydrophobic protein. It is under process of automation. Carboxyl-terminal analysis was performed with carboxypeptidases A, B, and P in the presence of alcohols and detergents. The effects on the carboxypeptidases (and several proteases) are summarized. These additions increased the solubility of proteins and enhanced the digestion. For N-terminal sequencing, conventional Edman degradation was followed up to the ATZ-derivative and this ATZ-derivative was reacted with primary amines such as 125I-histamine or 1-aminopyrene to produce a phenylthiocarbamyl-amino acid-amine derivative with a yield as high as 95%. The conventional procedure of Edman degradation was preserved, but instead of the acid conversion to PTH derivatives, the above coupling procedure was introduced in order to increase the sensitivity to the 1–100f mole range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, J., Brown, R. S., and Tsugita, A. (1984). Nucleic Acid Res. 11, 7145–7156.

    Article  Google Scholar 

  • Bougueleret, L., Schwarzstein, M., Tsugita, A. and Zabeau, M. (1984). Nucleic Acid Res. 12, 3659–3677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrel, C. J., Cooper, P. D., and Swann, J. M. (1975). Aust. J. Chem. 28, 2289–2298.

    Article  Google Scholar 

  • Dianoux, A. C., Vignais, P. V., and Tsugita, A. (1981). FEBS Lett. 130, 119–123.

    Article  CAS  PubMed  Google Scholar 

  • Dianoux, A. C., Tsugita, A., and Przybylski, M. (1984). FEBS Lett. 174, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Hare, P. E. (1977). In Methods in Enzymology, Vol. 47 (Hirs, C. H. W., and Timasheff, S. N., eds.) Academic Press, New York, pp. 3–18.

    Google Scholar 

  • Hewick, R. M., Hunkapiller, M. W., Hood, L. E., and Dreyer, W. J. (1981). J. Biol. Chem. 256, 7990–7997.

    Article  CAS  PubMed  Google Scholar 

  • Hunkapiller, M. W., Lujan, E., Ostrander, F., and Hood, L. E. (1983). In Methods in Enzymology, Vol. 91, (Hirs, C. H. W., and Timasheff, S. N., eds.), Academic Press, New York, pp. 227–236.

    Google Scholar 

  • Laemmli, U. K. (1970). Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lauer, W. G. (1969). In Fundamental Techniques in Virology (Habel, K., and Salzman, N. PP., eds.), Academic Press, New York, pp. 379–385.

    Google Scholar 

  • Ricco, P., Tsugita, A., Bobba, A., Vilbois, F., and Quagliariello, E. (1985). Biochem. Biophys. Res. Commun. 127, 484–492.

    Article  Google Scholar 

  • Schenkman, S., Tsugita, A., Schwartz, M. N., and Rosenbusch, J. P. (1984). J. Biol. Chem. 259, 7570–7576.

    Article  CAS  PubMed  Google Scholar 

  • Tsernoglou, D., Tsugita, A., Tucker, A. D., and v.d. Vliet, P. C. (1985). FEBS Lett. 188, 248–252.

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, A., and Ataka, T. (1986). In Progress of Ames Protain Urem (L'Italien, J. J., ed.), Plenum Press, New York, in press.

    Google Scholar 

  • Tsugita, A., and Scheffler, J. J. (1982a). Eur. J. Biochem. 124, 585–588.

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, A., and Scheffler, J. J. (1982b). Proc. Japan Acad. 58, 1–4.

    Article  CAS  Google Scholar 

  • Tsugita, A., Blazy, B., Takahashi, M., and Baudras, A. (1982a). FEBS Lett. 144, 304–308.

    Article  CAS  Google Scholar 

  • Tsugita, A., v.d. Broek, R., and Przybylski, M. (1982b). FEBS Lett. 137, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, A., Sasada, S., v. d. Broek, R., and Scheffler, J. J. (1982c). Eur. J. Biochem. 124, 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Tsugita, A., Vilbois, F., Jone, C., and v. d. Broek, R. (1984). Hoppe-Seyler's Z. Physiol. Chem. 365, 343–345.

    Article  CAS  Google Scholar 

  • Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. (1981). Anal. Biochem. 118, 197–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsugita, A., Ataka, T. & Uchida, T. Approaches for submicrosequencing. J Protein Chem 6, 121–130 (1987). https://doi.org/10.1007/BF00247761

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00247761

Key words

Navigation