Skip to main content
Log in

Mass transfer at gas sparged spherical electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Rates of mass transfer were measured for the cathodic reduction of K3 Fe(CN)6 in a large excess of sodium hydroxide at a single sphere cathode stirred by oxygen evolved at a horizontal disc anode placed below. The effect of the oxygen discharge rate and sphere diameter were studied at different ferricyanide concentrations. The rate of mass transfer was found to increase by an amount ranging from 66% to 450% over the natural convection value depending on the operating conditions. The data were correlated using hydrodynamic boundary layer theory and Kolmogoroff's theory of isotropic turbulence. The data were found to fit the equation: Sh = 2 + 0.21 Sc 0.33 (ed s 4/v 3)0.268 where e is the rate of energy dissipation/unit mass of the liquid. Previous data on mass transfer at fixed beds of spheres stirred by counterelectrode oxygen bubbles were also correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ibl, E. Adam, J. Venczel and E. Schalch, Chem. Ing. Techn 43 (1971) 202.

    Google Scholar 

  2. A. S. Gendron and V. Ettel, Can. J. Chem. Eng. 53 (1975) 36.

    Google Scholar 

  3. G. H. Sedahmed, J. Appl. Electrochem. 8 (1978) 339.

    Google Scholar 

  4. Idem, ibid. 10 (1980) 351.

    Google Scholar 

  5. G. H. Sedahmed and L. W. Shemilt, ibid. 11 (1981) 351.

    Google Scholar 

  6. Idem, Can. J. Chem. Eng. 60 (1982) 767.

    Google Scholar 

  7. G. H. Sedahmed, ibid. 64 (1986) 75.

    Google Scholar 

  8. Idem, J. Appl. Electrochem. 14 (1984) 693.

    Google Scholar 

  9. A. M. Ahmed and G. H. Sedahmed, J. Electrochem. Soc. 135 (1988) 2766.

    Google Scholar 

  10. O. N. Cavatorta and U. Bohm, J. Appl Electrochem. 17 (1987) 340.

    Google Scholar 

  11. L. Coppola, O. N. Cavatorta and U. Bohm, ibid. 19 (1989) 100.

    Google Scholar 

  12. S. Piovano, O. N. Cavatorta and U. Bohm, ibid. 18 (1988) 128.

    Google Scholar 

  13. O. N. Cavatorta, U. Bohm, A. M. Chiappori De Del Giorgio, ibid. 21 (1991) 40.

    Google Scholar 

  14. G. H. Sedahmed, H. A. Farag, A. A. Zatout and F. A. Kathout, ibid. 16 (1986) 374.

    Google Scholar 

  15. F. A. Katkout, A. A. Zatout, H. A. Farag and G. H. Sedahmed, Can. J. Chem. Eng. 66 (1988) 497.

    Google Scholar 

  16. G. H. Sedahmed, J. Appl. Electrochem. 15 (1985) 777.

    Google Scholar 

  17. L. Sigrist, O. Dossenbach and N. Ibl, Int. J. Heat Mass Transfer 22 (1979) 1393.

    Google Scholar 

  18. W. Kast, Chem. Ing. Techn 35 (1963) 785.

    Google Scholar 

  19. Idem, Int. J. Heat Mass Transfer 5 (1962) 329.

    Google Scholar 

  20. L. J. Janssen and J. G. Hoogland, Electrochem. Acta 18 (1973) 543.

    Google Scholar 

  21. G. Kreysa and M. Kuhn, J. Appl. Electrochem. 15 (1985) 517.

    Google Scholar 

  22. N. Ibl, Electrochim. Acta 24 (1979) 1105.

    Google Scholar 

  23. W. D. Deckwer and A. Schumpe, Int. Chem. Engng. 27 (1987) 405.

    Google Scholar 

  24. W. D. Deckwer, Chem. Eng. Sci. 35 (1980) 1341.

    Google Scholar 

  25. P. H. Calderbank and M. B. Moo-Young, ibid. 16 (1961) 39.

    Google Scholar 

  26. D. M. Levins and J. R. Glastonburg, ibid. 27 (1972) 537.

    Google Scholar 

  27. P. Sanger and W. D. Deckwer, Chem. Eng. J. 22 (1981) 179.

    Google Scholar 

  28. Y. Sano, N. Yamagichi and T. Adachi, J. Chem. Eng., Japan 7 (1974) 255.

    Google Scholar 

  29. R. Bucholz, Ph.D Thesis, University of Hanover (1979).

  30. A. N. Kolmogoroff, C. R. Acad Sci. URSS 31 (1941) 538.

    Google Scholar 

  31. J. O. Hinze, ‘Turbulence’, McGraw-Hill, NY (1975).

    Google Scholar 

  32. M. Eisenberg, C. W. Tobias and C. R. Wilke, J. Electrochem. Soc. 101 (1954) 306.

    Google Scholar 

  33. T. R. Beck, J. Electrochem. Soc. 116 (1969) 1038.

    Google Scholar 

  34. G. M. Whitney and C. W. Tobias, AIChE. J 34 (1988) 1981.

    Google Scholar 

  35. L. J. J. Janssen and E. Barendrecht, Electrochim. Acta 24 (1979) 693.

    Google Scholar 

  36. C. I. Elsner and S. L. Marchiano, J. Appl. Electrochem. 12 (1982) 735.

    Google Scholar 

  37. F. N. Ngoya and J. Thonstad, Electrochim. Acta 30 (1985) 1959.

    Google Scholar 

  38. J. R. Selman and C. W. Tobias, Adv. in Chem. Eng. 10 (1978) 211.

    Google Scholar 

  39. M. G. Fouad and T. Gouda, Electrochim. Acta 9 (1964) 1071.

    Google Scholar 

  40. A. Findlay and J. K. Kitchener, ‘Practical Physical Chemistry’, Longmans, London (1965).

    Google Scholar 

  41. M. Eisenberg, C. W. Tobias and C. R. Wilke, J. Electrochem. Soc. 103 (1956) 413.

    Google Scholar 

  42. M. A. Zarraa, Y. A. El-Tawil, H. A. Farag, M. Z. El-Abd and G. H. Sedahmed, Chem. Eng. J. 47 (1991) 187.

    Google Scholar 

  43. N. P. Brandon and G. H. Kelsall, J. Appl. Electrochem. 15 (1985) 475.

    Google Scholar 

  44. J. S. Gopal and M. M. Sharma, Can. J. Chem. Eng. 61 (1983) 517.

    Google Scholar 

  45. V. Levich, ‘Physicochemical Hydrodynamics’, Prentice Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  46. D. A. Lewis, R. W. Feld, A. M. Xavier and D. Edwards, Trans. Inst. Chem. Eng. 60 (1982) 40.

    Google Scholar 

  47. O. N. Cavatorta and U. Bohm, Chem. Eng. Res. Des. 66 (1988) 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedahmed, G.H. Mass transfer at gas sparged spherical electrodes. J Appl Electrochem 23, 167–172 (1993). https://doi.org/10.1007/BF00246955

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00246955

Keywords

Navigation