Skip to main content
Log in

Vergleichende Untersuchungen des Sauerstoffverbrauchs und der Bearbeitung von Glucose, Milchsäure und Brenztraubensäure im Stoffwechsel der Hundeniere

  • Published:
Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Annison, E. F., and R. J. Pennington: The metabolism of short-chain fatty acids in the sheep. III. Formic-, n-valeric and some branched-chain acids. Biochem. J. 57, 685 (1954).

    Google Scholar 

  2. Artom, C.: Effect of choline administration on the oxidation of fatty acids by extrahepatic tissues. J. biol. Chem. 213, 681 (1955).

    Google Scholar 

  3. Barker, H. G., J. K. Clark and A. P. Crosley jr.: Proc. 45th Ann. Meeting. J. clin. Invest. 31, 616 (1952).

    Google Scholar 

  4. Barker, H. G., J. K. Clark, A. P. Crosley jr. and A. J. Cummins: The effect of salt poor human albumin on renal oxygen consumption. Amer. J. med. Sci. 218, 715 (1949).

    Google Scholar 

  5. Baumgartner, G., G. Grupp u. S. Janssen: Automatisch registrierendes Bubble-flow Meter (BFM). Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 222, 251 (1954).

    Google Scholar 

  6. Beisenherz, G., H. J. Boltze, Th. Bücher, R. Czok, K. H. Garbade, E. Meyer-Arendt u. G. Pfleiderer: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäuredehydrogenase, Glycerophosphatdehydrogenase und Pyruvatkinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555 (1953).

    Google Scholar 

  7. Betke, K.: Der menschliche rote Blutfarbstoff. Berlin, Göttingen, Heidelberg: Springer 1954.

    Google Scholar 

  8. Bloom, B.: Catabolism of glucose by mammalian tissues. Proc. Soc. exp. Biol. (N. Y.) 88, 317 (1955).

    Google Scholar 

  9. Bloom, B., and D. W. Stetten jr.: The fraction of glucose catabolized via the glycolytic pathway. J. biol. Chem. 212, 555 (1955).

    Google Scholar 

  10. Bloom, B., M. R. Stetten and D. W. Stetten jr.: Evaluation of catabolic pathways of glucose in mammalian systems. J. biol. Chem. 212, 681 (1953).

    Google Scholar 

  11. Bollmann, J. L., and J. H. Grindley: Measurement of renal gluconeogenesis. Amer. J. Physiol. 170, 38–44 (1952).

    Google Scholar 

  12. Chasis, H., J. Redish, W. Goldring, H. Ranges and H. Smith: The use of sodium-p-aminohippurate for the functional evaluation of the human kidney. J. clin. Invest. 24, 583 (1945).

    Google Scholar 

  13. Chinard, F. P., M. F. Nolan and T. Enns: Abstr. of Papers, 134th meeting of the Amer. chem. Soc. 1958, p. 7 C.

  14. Chinard, F. P., W. R. Taylor, M. F. Nolan and T. Enns: Renal handling of glucose in dogs. Amer. J. Physiol. 196, 535 (1959).

    Google Scholar 

  15. Clark, J. K., and H. G. Barker: Studies of renal oxygen consumption. I. The effect of tubular loading (PAH), water diuresis and osmotic (mannitol) diuresis. J. clin. Invest. 30, 745 (1951).

    Google Scholar 

  16. Cohn, C., B. Katz and M. Kolinsky: Renal gluconeogenesis in the intact dog. Amer. J. Physiol. 165, 423 (1951).

    Google Scholar 

  17. Deetjen, P., u. K. Kramer: Na-Rückresorption und O2-Verbrauch der Niere. Klin. Wschr. 1960, 680.

  18. Dickens, F., and H. Weil-Malherbe: Metabolism of normal and tumour tissue. XIV. A note on the metabolism of medulla of kidney. Biochem. J. 30, 659 (1936).

    Google Scholar 

  19. Gey, K. F.: The concentration of glucose in rat tissues. Biochem. J. 64, 145 (1956).

    Google Scholar 

  20. Geyer, R. P., and M. Cunningham: Metabolism on fatty acids in vitro, studied with odd and even members of the RC14OOH series. J. biol. Chem. 184, 641 (1950).

    Google Scholar 

  21. Geyer, R. P., M. F. Meadows, L. D. Marshall and M. S. Gongaware: The influence of sodium, potassium, and lithium on fatty acid metabolism. J. biol. Chem. 205, 81 (1953).

    Google Scholar 

  22. Glaser, H., D. Laszlo u. A. Schürmeyer: Zur pharmakologischen Beeinflussung der Durchblutung und des Energieumsatzes der Niere. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 168, 175 (1932).

    Google Scholar 

  23. Glaser, H., D. Laszlo u. A. Schürmeyer: Über den Energieumsatz der Niere. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 168, 139 (1932).

    Google Scholar 

  24. Goda, T.: Notiz über die Umwandlung von Fructose in Glucose in der Niere. Biochem. Z. 297, 134 (1938).

    Google Scholar 

  25. Grupp, G., K. Hierholzer, H. D. Söling u. S. Janssen: Die Beziehungen zwischen Durchblutung und Sauerstoffverbrauch bzw. arterivenöser Sauerstoffdifferenz in der Hundeniere. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 267, 401 (1958).

    Google Scholar 

  26. György, P., u. W. Keller: Weitere Beiträge zum Nierenstoffwechsel. (Ammoniak-, Phosphatstoffwechsel, Zuckerverbrauch). Biochem. Z. 210, 434 (1929).

    Google Scholar 

  27. György, P., W. Keller u. Th. Brehme: Nierenstoffwechsel und Nierenentwicklung. Biochem. Z. 200, 356 (1928).

    Google Scholar 

  28. Hahn, A., H. Niemer u. E. Meisner: Über die Hemmung der Milchsäurebildung durch Sauerstoff, 5. Mitt. Z. Biol. 100, 358 (1940).

    Google Scholar 

  29. Hohorst, H. J.: Enzymatische Bestimmung von l(+)-Milchsäure. Biochem. Z. 328, 509 (1957).

    Google Scholar 

  30. Huggett, A. S., and D. A. Nixon: Use of glucose oxidase, peroxidase, and o-dianisidine in determination of blood and urinary glucose. Lancet 1957, 368.

  31. Keilin, D., and E. F. Hartree: The use of glucoseoxidase (Notatin) for the determination of glucose in biological material and for the study of glucoseproducingsystems by manometric methods. Biochem. J. 42, 230 (1948).

    Google Scholar 

  32. Kelly, Th. L., E. D. Nielson, R. B. Johnson and C. S. Vestling: Glucose-6-phosphate dehydrogenase of adrenal tissue. J. biol. Chem. 212, 545 (1955).

    Google Scholar 

  33. Kleinschmidt, A.: Die Stellung der Niere im Kohlenhydratstoffwechsel. Klin. Wschr. 1953, 873.

  34. Lenti, C.: Sulla glicolisi nel rene. Boll. Soc. ital. Biol. sper. 13, 659 (1938).

    Google Scholar 

  35. Levy, M. N.: Influence of variations in blood flow and of dinitrophenol on renal oxygen consumption. Amer. J. Physiol. 196, 937 (1959).

    Google Scholar 

  36. Lowell, D. J., S. A. Greenspon, C. A. Krakower and J. A. Bain: Metabolic activity of renal cortical tubular epithelial cells. Amer. J. Physiol. 172, 709 (1953).

    Google Scholar 

  37. McCann, W. P., and J. R. Jude: The synthesis of glucose by the kidney. Bull. Johns Hopk. Hosp. 103, 77 (1958).

    Google Scholar 

  38. McDonald, R. K., N. W. Shock and M. J. Yiengst: Effect of lactate on renal tubular transfer of p-aminohippurate in man. Proc. Soc. exp. Biol. (N.Y.) 77, 686 (1951).

    Google Scholar 

  39. Meriel, P., F. Galinier, J.-M. Suc, P.-F. Combes, C. Regnier et J.-P. Bonhoure: Le métabolisme du rein humain. Rev. franç. Ét. clin. biol. 3, 332 (1958).

    Google Scholar 

  40. Mudge, G. H., and J. V. Taggart: Effect of acetate on the renal excretion of p-aminohippurate in the dog. Amer. J. Physiol. 161, 191 (1950).

    Google Scholar 

  41. Reinecke, R. M.: The kidney as a source of glucose in the eviscerated rat. Amer. J. Physiol. 140, 276 (1943).

    Google Scholar 

  42. Reinecke, R. M.: The kidney as a locus of fructose metabolism. Amer. J. Physiol. 141, 669 (1944).

    Google Scholar 

  43. Reinecke, R. M.: Renal gluconeogenesis in the eviscerated monkey (Macaca mulatta). Amer. J. Physiol. 171, 29 (1952).

    Google Scholar 

  44. Reinecke, R. M.: Renal arterivenous changes in lactic acid and sugar in the eviscerated rat. Amer. J. Physiol. 182, 243 (1955).

    Google Scholar 

  45. Reinecke, R. M.: Renal arteriovenous changes in fructose and blood sugar in the rat with ligated ureters. Amer. J. Physiol. 186, 409 (1956).

    Google Scholar 

  46. Reinecke, R. M., and P. J. Hauser: Renal glucogenesis in the eviscerated dog. Amer. J. Physiol. 153, 205 (1948).

    Google Scholar 

  47. Reinecke, R. M., and S. Roberts: The effect of fasting on the blood sugar curve of the eviscerated rat. Amer. J. Physiol. 141, 476 (1944).

    Google Scholar 

  48. Reinecke, R. M., G. G. Rudolph and M. J. Bryson: Effect of ureteral ligation, phloridzin and mercury bichloride on the glucogenic function of the kidney. Amer. J. Physiol. 151, 198 (1947).

    Google Scholar 

  49. Reinecke, R. M., G. G. Rudolph, M. J. Bryson and L. T. Samuels: Effect of the kidney of the fasting rat on blood sugar and hemoglobin concentrations before and after evisceration or partial hepatectomy. Amer. J. Physiol. 153, 47 (1948).

    Google Scholar 

  50. Roberts, S., and L. T. Samuels: Fasting and gluconeogenesis in the kidney of the eviscerated rat. Amer. J. Physiol. 142, 240 (1944).

    Google Scholar 

  51. Russell, J. A., and A. E. Wilhelmi: Metabolism of kidney tissue in the adrenalectomized rat. J. biol. Chem. 137, 713 (1941).

    Google Scholar 

  52. Schirmeister, J., L. Schmidt u. H. D. Söling: Die renale Extraktion verschiedener Clearencesubstanzen beim Hund während maximal erhöhtem Ureterdruck. Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak. 237, 473 (1959).

    Google Scholar 

  53. Schwalb, H.: Über den Einfluß von Fluorid und Milchsäure auf die Tubulusfunktion. In: Pathol. Physiol. und Klinik d. Nierensekretion, 3. Freiburger Symposion, S. 160f. Berlin, Göttingen, Heidelberg: Springer 1955.

    Google Scholar 

  54. Shreeve, W. W.: Conversion of C14-labeled propionate, lactate and pyruvate to acetyl groups in the rat. J. biol. Chem. 195, 1 (1952).

    Google Scholar 

  55. Slyke, D. D. van, C. P. Rhoads, A. Hiller and A. S. Alving: Relationships between urea excretion, renal blood flow, renal oxygen consumption, and diuresis. The mechanism of urea excretion. Amer. J. Physiol. 109, 336 (1934).

    Google Scholar 

  56. Smith, H. W.: Principles of renal physiology, S. 177–178. New York: Oxford University Press 1956.

    Google Scholar 

  57. Söling, H. D., u. G. Grupp: Änderungen des Stoffwechsels der Hundeniere nach kurzfristiger Abklemmung der Nierenarterie. (Im Druck.)

  58. Stewart, L. P., and J. C. Thompson: The conversion of laevulose and fatty acid into glucose. Biochem. J. 35, 245 (1941).

    Google Scholar 

  59. Teng, C. T.: Studies on carbohydrate metabolism in rat kidney slices. I. Metabolism of glycerol and pyruvate. Arch. Biochem. 48, 409 (1954).

    Google Scholar 

  60. Teng, C. T.: Studies on carbohydrate metabolism in rat kidney slices. II. Effect of alloxan diabetes and insulin administration on glucose uptake and glucose formation. Arch. Biochem. 48, 415 (1954).

    Google Scholar 

  61. Teng, C. T.: Studies on carbohydrate metabolism in rat kidney slices. III. Effect of adrenalectomy and hypophysectomy on glucose uptake and glucose formation. Arch. Biochem. 57, 61 (1955).

    Google Scholar 

  62. Vishwakarma, P., and W. D. Lotspeich: The excretion of l-malic acid in relation to the tricarboxylic acid cycle in the kidney. J. clin. Invest. 38, 414 (1959).

    Google Scholar 

  63. Wenner, C. E., D. F. Dunn and S. Weinhouse: A study of glucose oxidation in whole tissue homogenates. J. biol. Chem. 205, 409 (1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 4 Textabbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söling, HD., Schmidt, L. Vergleichende Untersuchungen des Sauerstoffverbrauchs und der Bearbeitung von Glucose, Milchsäure und Brenztraubensäure im Stoffwechsel der Hundeniere. Naunyn - Schmiedebergs Arch 240, 140–156 (1960). https://doi.org/10.1007/BF00246618

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00246618

Navigation