Archives of Microbiology

, Volume 156, Issue 6, pp 471–476 | Cite as

Ammonia rhythm in Microcystis firma studied by in vivo 15N and 31P NMR spectroscopy

  • Rolf Altenburger
  • Sibylle Abarzua
  • Rainer Callies
  • L. Horst Grimme
  • Adalbert Mayer
  • Dieter Leibfritz
Original Papers


Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show γ-aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.

Key words

Ammonia assimilation In vivo 15N and 31P NMR spectroscopy Amino acid metabolism Carbon limitation Cyanobacterium Microcystis firma 



γ-aminobutyric acid


glutamate synthase


glutamine synthetase


methylene diphosphonate


3-(N-morpholino)-2-hydroxy-propanesulfonic acid


nucieoside diphosphosugars


nuclear Overhauser effect


nuclear magnetic resonance


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abarzua S, Schiewer U, Schüler H, Kleinhempel C (1988) Ammonia rhythm in batch cultures of the cyanobacterium Microcystis firma: evocation in dependence of external conditions. J Plant Physiol 133:585–591CrossRefGoogle Scholar
  2. Abarzua S, Nietz K (1990) NHinf4/sup+ release by non-growing cultures of the cyanobacterium Microcystis firma. Physiol Plant 78:135–139CrossRefGoogle Scholar
  3. Allen MS, McBurney MI, Van Soest PJ (1985) Cation-exchange capacity of plant cell walls at neutral pH. J Sci Food Agric 36:1065–1072CrossRefGoogle Scholar
  4. Boussiba S, Resch CM, Gibson J (1984) Ammonia uptake and retention in some cyanobacteria. Arch Microbiol 138:287–292CrossRefGoogle Scholar
  5. Callies R, Altenburger R, Mayer A, Grimme LH, Leibfritz D (1990) A new illumination system for in vivo NMR spectroscopy. J Magn Reson 90:561–566Google Scholar
  6. Choi BS, Roberts JE, Evans JNS, Roberts MF (1986) Nitrogen metabolism in Methanobacterium thermoautotrophicum: A solution and solid-state 15N NMR study. Biochemistry 25:2243–2248CrossRefGoogle Scholar
  7. Crist RH, Martin JR, Guptill PW, Eslinger JM (1990) Interactions of metals and protons with algae. 2. Ion exchange in adsorption and metal displacement by protons. Environ Sci Technol 24:337–342CrossRefGoogle Scholar
  8. Di Martino Rigano V, Martello A, Di Martino C, Rigano C (1985) Effect of CO2 and phosphate deprivation on the control of nitrate, nitrite and ammonium metabolism in Chlorella. Physiol Plant 63:241–246CrossRefGoogle Scholar
  9. Harris RK (1983) Nuclear magnetic resonance spectroscopy. Pitman, London MarshfieldGoogle Scholar
  10. Kallas T, Dahlquist FW (1981) Phosphorus-31 nuclear magnetic resonance analysis of internal pH during photosynthesis in the cyanobacterium Synechococcus. Biochemistry 20:5900–5907CrossRefGoogle Scholar
  11. Köppen C (1989) NMR-Zeitreihenanalytik und zeitlich aufgelöste in vivo 31P NMR Spektroskopie im Sekundenbereich. Thesis, University of Bremen, Faculty of PhysicsGoogle Scholar
  12. Kugel H, Mayer A, Kirst GO, Leibfritz D (1990) The energy requirements of pH homeostasis define the limits of pH regulation — A model. Biochim Biophys Acta 1054:33–40CrossRefGoogle Scholar
  13. Küsel AC, Kuhn W, Sianoudis J, Grimme LH, Leibfritz D, Mayer A (1989) N-15 in vivo NMR spectroscopic investigation of nitrogen deprived cell suspensions of the green alga Chlorella fusca. Arch Microbiol 151:434–438CrossRefGoogle Scholar
  14. Küsel AC, Sianoudis J, Leibfritz D, Grimme LH, Mayer A (1990) The dependence of the cytoplasmic pH in aerobic and anaerobic cells of the green algae Chlorella fusca and Chlorella vulgaris on the pH of the medium as determined by 31P in vivo NMR spectroscopy. Arch Microbiol 153:254–258CrossRefGoogle Scholar
  15. Lara C, Romero JM, Coronil T, Buerrero MG (1987) 6 Interactions between photosynthetic nitrate assimilation and CO2 fixation in cyanobacteria. Prokaryotes. In: Ullrich WR (ed) Inorganic nitrogen metabolism. Springer, Berlin Heidelberg New York, pp 45–52CrossRefGoogle Scholar
  16. Martin F (1985) Monitoring plant metabolism by 13C, 15N and 14N nuclear magnetic resonance spectroscopy. A review of the applications to algae, fungi and higher plants. Physiol Veg 23:463–490Google Scholar
  17. Mitsumori F, Ito O (1984) A simple photoirradiation method for biological samples in NMR probes and its application to photosynthesizing green algae. J Magn Reson 60:106–108Google Scholar
  18. Ohmori M, Oh-hama T, Furihata K, Miyachi S (1986) Effect of ammonia on cellular pH of Anabaena cylindrica determined with 31P NMR spectroscopy. Plant Cell Physiol 27:563–566Google Scholar
  19. Packer L, Spath S, Martin J-B, Roby C, Bligny R (1987) 23Na and 31P NMR studies on the effects of salt stress on the freshwater cyanobacterium Synechococcus 6311. Arch Biochem Biophys 256:354–361CrossRefGoogle Scholar
  20. Schiewer U, Baader G (1982) Pelagic NH4 rhythm independent of the sediment in eutrophic shallow waters. Int Rev Ges Hydrobiol 67:845–850Google Scholar
  21. Schiewer U, Arndt H, Baader G, Ballin G, Börner R, Evert F-K, Georgi F, Heerkloss R, Jost G, Kell V, Krüger B, Walter T (1986) The bounds and potential effects of NHinf4/sup+ (loading) on the pelagic system of a baltic estuary. Limnologica 17:7–28Google Scholar
  22. Sianoudis J, Küsel AC, Naujokat T, Offermann W, Mayer A, Grimme LH, Leibfritz D (1985) Respirational activity of Chlorella fusca monitored by in vivo P-31 NMR. Eur Biophys J 13:89–97CrossRefGoogle Scholar
  23. Sianoudis J, Küsel AC, Mayer A, Grimme LH, Leibfritz D (1987) The cytoplasmatic pH in photosynthesizing cells of the green alga Chlorella fusca, measured by 31-P-NMR spectroscopy. Arch Microbiol 147:25–29CrossRefGoogle Scholar
  24. Solomonson LP, Spehar AM (1979) Model for the regulation of nitrate assimilation. Nature 265:373–375CrossRefGoogle Scholar
  25. Thoma WJ, Gleason FK (1987) In vivo effects of photosynthesis inhibitors in Synechococcus as determined by 31P NMR spectroscopy. Biochemistry 26:2510–2515CrossRefGoogle Scholar
  26. Thorpe TA, Bagh K, Cutler AJ, Dunstan DI, McIntyre DD, Vogel HJ (1989) A 14N and 15N nuclear magnetic resonance study of nitrogen metabolism in shoot-forming cultures of white spruce (Picea glauca) buds. Plant Physiol 91:193–202CrossRefGoogle Scholar
  27. Turpin DH, Elfrifi IR, Birch DG, Weger HG, Holmes JJ (1988) Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can J Bot 66:2083–2097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Rolf Altenburger
    • 1
  • Sibylle Abarzua
    • 3
  • Rainer Callies
    • 2
  • L. Horst Grimme
    • 1
  • Adalbert Mayer
    • 2
  • Dieter Leibfritz
    • 1
  1. 1.Fachbereich 2, Biologie/ChemieUniversität BremenBremen 33Germany
  2. 2.Fachbereich 1, PhysikUniversität BremenBremen 33Germany
  3. 3.Sektion Biologie, Wissenschaftsbereich Pflanzenphysiologie und BiochemieUniversität RostockRostockGermany

Personalised recommendations