Archives of Microbiology

, Volume 156, Issue 6, pp 444–448 | Cite as

Construction of stable, single-copy luciferase gene fusions in Escherichia coli

  • Angelina Guzzo
  • Michael S. DuBow
Original Papers


A ColE1-based plasmid for transcriptional gene fusions was constructed that contains both the promoterless luxAB genes of Vibrio harveyi and a tet marker within the inverted repeats of a left end-truncated Tn5 element. Introduction of this plasmid into an Escherichia coli strain containing a plasmid (pTF421) that overproduces ColE1 RNA1 (and thus inhibits replication of the ColE1 plasmid) allowed selection for cells that had a single copy of the luxAB operon transposed into the chromosome beginning 5 days post-transformation. The long latent period necessary for Tn5 transposition is analogous to that found in other systems, where transposition frequencies and mutation rates increase in a time-dependent manner when selected for upon prolonged incubation on Petri dishes under bacteriostatic conditions.

Key words

Transposon5 Xylose operon Transcriptional fusions ColE1 replication luxAB genes Escherichia coli Vibrio harveyi 





base pair(s)














Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin TO, Berends T, Bunch TA, Holzman TF, Rausch SK, Shamansky L, Treat ML, Ziegler MM (1984) Cloning of the luciferase structural genes from Vibrio harveyi and expression of bioluminescence in Escherichia coli. Biochemistry 24:3663–3667CrossRefGoogle Scholar
  2. Berg D (1989) Transposon Tn5. In: Berg D, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 185–210Google Scholar
  3. Briggs KA, Kancashire WE, Hartley BS (1984) Molecular cloning, DNA structure and expression of the Escherichia coli d-xylose isomerase. EMBO J 3:611–616CrossRefGoogle Scholar
  4. Bruijn FJ de, Lupski JR (1984) The use of transposon Tn5 mutagenesis in the rapid generation of correlated physical and genetic maps of DNA segments cloned into multicopy plasmids — a review. Gene 27:131–149CrossRefGoogle Scholar
  5. Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145CrossRefGoogle Scholar
  6. Carmi OA, Stewart GSAB, Ulitzur S, Kuhn J (1987) Use of bacterial luciferase to establish a promoter probe vehicle capable of nondestructive real-time analysis of gene expression in Bacillus spp. J Bacteriol 169:2165–2170CrossRefGoogle Scholar
  7. Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an enzymatically active β-galactosidase segment to aminoterminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the deletion and cloning of translational initiation signals. J Bacteriol 143:971–980PubMedPubMedCentralGoogle Scholar
  8. Davis EO, Henderson PJF (1987) The cloning and DNA sequence of the gene xylE for xylose-proton symport in Escherichia coli K12. J Biol Chem 262:13928–13932PubMedGoogle Scholar
  9. Engebrecht J, Simon M, Silverman M (1985) Measuring gene expression with light. Science 227:1345–1347CrossRefGoogle Scholar
  10. Fitzwater T, Tamm J, Polisky B (1984) RNA1 is sufficient to mediate plasmid ColE1 incompatibility in vivo. J Mol Biol 175:409–417CrossRefGoogle Scholar
  11. Gough J, Murray N (1983) Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 66:1–19CrossRefGoogle Scholar
  12. Guzzo A, Diorio C, DuBow M (1991) Transcription of the Escherichia coli fliC gene is regulated by metal ions. Appl Environ Microbiol 57:2255–2259PubMedPubMedCentralGoogle Scholar
  13. Hall BG (1991) Increased rates of advantageous mutations in response to environmental challenges. ASM News 57:82–86Google Scholar
  14. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580CrossRefGoogle Scholar
  15. Johnson RC, Reznikoff WS (1983) DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304:280–282CrossRefGoogle Scholar
  16. Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coli. Proc Natl Acad Sci USA 77:2819–2823CrossRefGoogle Scholar
  17. Kogoma T, Farr SB, Joyce KM, Natvig DO (1988) Isolation of gene fusions (soi::lacZ) inducible by oxidative stress in Escherichia coli. Proc Natl Acad Sci USA 85:4799–4803CrossRefGoogle Scholar
  18. Krebs MP, Reznikoff WS (1988) Use of a Tn5 derivative that creates lacZ translational fusions to obtain a transposition mutant. Gene 63:277–285CrossRefGoogle Scholar
  19. Kues U, Stahl U (1989) Replication of plasmids in gram-negative bacteria. Microbiol Rev 53:491–516PubMedPubMedCentralGoogle Scholar
  20. Kurose N, Murata K, Kimura A (1987) Cloning of the d-xylose uptake gene linked to the xylA gene in Escherichia coli. Agric Biol Chem 51:2575–2578Google Scholar
  21. Maleszka R, Wang PY, Schneider H (1982) A ColE1 hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium. Can J Biochem 60:144–151CrossRefGoogle Scholar
  22. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162CrossRefGoogle Scholar
  23. Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, New YorkGoogle Scholar
  24. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  25. Miyamoto CM, Graham AD, Boylan M, Evans JF, Hasel KW, Meighen EA, Graham AF (1985) Polycistronic mRNAs code for polypeptides of the Vibrio harveyi luminescence system. J Bacteriol 161:995–1001PubMedPubMedCentralGoogle Scholar
  26. Read HA, Jaskunas SR (1980) Selection of E. coli mutants containing multiple transpositions of IS sequences. Mol Gen Genet 180:157–164CrossRefGoogle Scholar
  27. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251CrossRefGoogle Scholar
  28. Rosenfeld SA, Stevis PE, Ho NWY (1984) Cloning and characterization of the xyl genes from Escherichia coli. Mol Gen Genet 194:410–415CrossRefGoogle Scholar
  29. Shapiro JA, Higgins NP (1989) Differential activity of a transposable element in Escherichia coli colonies. J Bacteriol 171:5975–5986CrossRefGoogle Scholar
  30. Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  31. Slonczewski JL, Gonzalez TN, Bartholomew FM, Holt NJ (1987) Mu d-directed lacZ fusions regulated by low pH in Escherichia coli. J Bacteriol 169:3001–3006CrossRefGoogle Scholar
  32. Smith EG, Summers MD (1980) The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem 109:123–129CrossRefGoogle Scholar
  33. Tolias PP, DuBow MS (1987) The amino terminus of the bacteriophage D108 transposase protein contains a two-component, sequence-specific DNA-binding domain. Virology 157:117–126CrossRefGoogle Scholar
  34. Van Gijsegem F, Toussaint A, Casadaban M (1987) Mu as a genetic tool. In: Symonds N, Toussaint A, Van de Putte P, Howe MM (eds) Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 215–250Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Angelina Guzzo
    • 1
  • Michael S. DuBow
    • 1
  1. 1.Department of Microbiology and ImmunologyMcGill UniversityMontrealCanada

Personalised recommendations