Skip to main content
Log in

The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs

  • Minireview
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alegria D, Dutton PL (1987) Construction and characterization of monolayers films of the reaction center cytochrome c protein from Rps. viridis. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems: molecular biology and bioenergetics. Plenum Press, New York, pp 601–608.

    Google Scholar 

  • Amesz J, Knaff DB (1988) Molecular mechanisms of bacterial photosynthesis. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 113–178.

    Google Scholar 

  • Anthony C (1988) Bacterial energy transduction. Academic Press, London.

    Google Scholar 

  • Baccarini Melandri A, Zannoni D (1978) Photosynthetic and respiratory flow in the dual functional membrane of facultative photosynthetic bacteria. J Bioenerg Biomembr 10: 109–138.

    Google Scholar 

  • Bartsch RG (1978) Cytochromes. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 249–279.

    Google Scholar 

  • Beckman DL, Trawick DR, Kranz RG (1992) Bacterial cytochromes c biogenesis. Genes Dev 6: 268–283.

    Google Scholar 

  • Biel SW, Biel AJ (1990) Isolation of a Rb. capsulatus mutant that lacks c-type cytochromes and excretes porphyrins. J Bacteriol 172: 1321–1326.

    Google Scholar 

  • Blankenship RE, Mancino LJ, Feick R, Fuller RC, Machnicki J, Frank HA, Kirmaier C, Holton D (1984) Primary photochemistry and pigment composition of the reaction centers isolated from the green photosynthetic bacterium Chl. aurantiacus. Proc Natl Acad Sci USA 79: 6532–6536.

    Google Scholar 

  • Bott M, Ritz D, Hennecke H (1991) The Bradyrhizobium japonicum cycM gene encodes a membrane enchored homolog of mitochondrial c. J Bacteriol 173: 6766–6772.

    Google Scholar 

  • BrochmannJr H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136: 17–19.

    Google Scholar 

  • Caffrey M, Davidson E, Cusanovich M, Daldal F (1992) Mutants of Rb. capsulatus cytochrome c 2. Arch Biochem Biophys 292: 419–426.

    Google Scholar 

  • Casadio R, Venturoli G, Baccarini Melandri A (1988) Evaluation of electrical capacitance in biological membranes at different phospholipid to protein ratios. Eur Biophys J 16: 243–253.

    Google Scholar 

  • Clark AJ, Jackson JB (1981) The measurement of membrane potential during photosynthesis and during respiration in intact cells of Rps. capsulata by both electrochromism and by permeant ion redistribution. Biochem J 200: 389–397.

    Google Scholar 

  • Clayton RK (1955) Competition between light and dark metabolism in Rsp. rubrum. Arch Microbiol 22: 195–203.

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR, Stanier RW (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68.

    Google Scholar 

  • Cotton NPJ, Jackson JB (1982) The kinetics of carotenoid absorption changes in intact cells of photosynthetic bacteria. Biochim Biophys Acta 679: 138–145.

    Google Scholar 

  • Cotton NPJ, Clark AJ, Jackson JB (1981) The effect of venturicidin on light- and oxygen-dependent electron transport and proton translocation. Membrane potential development and ATP synthesis in intact cells of Rps. capsulata. Arch Microbiol 129: 94–99.

    Google Scholar 

  • Cotton NPJ, Clark AJ, Jackson JB (1983) Interaction between the respiratory and photosynthetic electron transport chains in intact cells of Rps. capsulata mediated by membrane potential. Eur J Biochem 130: 581–587.

    Google Scholar 

  • Cramer WA, Crofts AR (1982) Electron and proton transport. In: Govindjee (ed) Photosynthesis: energy conversion by plants and bacteria, vol 1. Academic Press, New York, pp 387–467.

    Google Scholar 

  • Crofts AR, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726: 149–185.

    Google Scholar 

  • Daldal F (1988) Cytochrome c 2-independent respiratory growth of Rb. capsulatus. J Bacteriol 170: 2388–2391.

    Google Scholar 

  • Daldal F (1990) Genetics of cytochromes c 2 and bc1 complex of photosynthetic bacteria. In: Drews G, Dawes EA (eds) Molecular biology of membrane-bound complexes in phototrophic bacteria. Plenum Press, New York London, pp 85–93.

    Google Scholar 

  • Daldal F, Cheng S, Applebaum J, Davidson E, Prince RC (1986) Cytochrome c 2 is not essential for photosynthetic growth of Rps. capsulata. Proc Natl Acad Sci USA 83: 2012–2016.

    Google Scholar 

  • Davidson E, Prince RC, Daldal F, Hauska G, Marrs BL (1987) Rhodobacter capsulatus MT113: a single mutation results in the absence of c-type cytochromes and in the absence of the cytochrome bc1 complex. Biochim Biophys Acta 890: 292–301.

    Google Scholar 

  • Davidson E, Prince RC, Haith C, Daldal F (1989) The cyt bc1 complex of R. sphaeroides can be restore cytochrome c 2-independent photosynthetic growth to a Rb. capsulatus mutant lacking cyt bc1. J Bacteriol 171: 6059–6066.

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985a) X-ray structure analysis of a membrane protein complex: electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rps. viridis. J Mol Biol 180: 385–398.

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985b) Structure of the protein subunits in the photosynthetic reaction center of Rps. viridis at 3 A resolution. Nature 318: 618–624.

    Google Scholar 

  • Donohue TJ, Mc Ewan AG, Kaplan S (1986) Cloning, DNA sequence and expression of the Rps. sphaeroides cytochrome c 2 gene. J Bacteriol 168: 962–972.

    Google Scholar 

  • Donohue TJ, McEwans A, Doren Svan, Crofts AR, Kaplan S (1988) Phenotypic and genetic characterization of cytochrome c 2 deficient mutants of Rps. sphaeroides. Biochemistry 88: 1918–1925.

    Google Scholar 

  • Dracheva SM, Drachev LA, Konstantinov AA, Semenov AY, Skulachev VP, Arutjunjan AM, Zaberezhanaya SM (1988) Electrogenic steps in the redox reactions catalyzed by photosynthetic reaction center complex from Rps. viridis. Eur J Biochem 171: 253–264.

    Google Scholar 

  • Dutton PL (1986) Energy transduction in anoxygenic photosynthesis. In: Staehelin LA, Arntzen CJ (eds) Encyclopedia of plant physiology, New Series, Vol 19, Photosynthesis III. Springer, Berlin Heidelberg New York, pp 197–237.

    Google Scholar 

  • Dutton PL, Prince RC (1978) Recation center driven cytochrome interactions in electron and proton translocation and energy coupling. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 525–570.

    Google Scholar 

  • Feick RG, Fitzpatrick M, Fuller C (1982) Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus. J. Bacteriol 105: 905–915.

    Google Scholar 

  • Ferguson SJ, Jones OTG, Kell DB, Sorgato MK (1979) Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rps. sphaeroides. Biochem J 180: 75–85.

    Google Scholar 

  • Ferguson SJ, Jackson JB, McEwan AG (1987) Anaerobic respiration in the Rhodospirillaceae: characterization of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46: 117–143.

    Google Scholar 

  • Fitch J, Meyer T, Cusanovich M, Tollin G, Beeumen Jvan, Rott M, Donohue TJ (1989) Expression of a cytochrome c 2 isozyme restores photosynthetic growth of R. sphaeroides mutants lacking the cytochrome c 2 gene. Arch Biochem Biophys 271: 502–507.

    Google Scholar 

  • Freeman JC, Blankenship RE (1990) Isolation and characterization of the membrane-bound cytochrome c-554 from the thermophilic green photosynthetic bacterium Chl. aurantiacus. Phot Res 23: 29–38.

    Google Scholar 

  • Garcia AF, Drews G, Reidl HH (1981) Comparative studies of two membrane fractions isolated from chemotrophically and phototrophically grown cells of Rps. capsulata. J Bacteriol 145: 1121–1128.

    Google Scholar 

  • Gaul DF, Knaff DB (1983) The presence of cytochrome c 1 in the purple sulfur bacterium Chromatium vinosum. FEBS Lett 162: 69–75.

    Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136: 11–16.

    Google Scholar 

  • Gooley P, Caffrey M, Cusanovich M, Mc Kenzie N (1990) Assignment of the 1H and 15N NMR spectra of the Rb. capsulatus ferrocytochrome c 2. Biochemistry 29: 2278–2290.

    Google Scholar 

  • Gray GO, Gaul DF, Knaff D (1983) Partial purification and characterization of two soluble c-type cytochromes from Chr. vinosum. Arch Biochem Biophys 222: 78–86.

    Google Scholar 

  • Grondelle Rvan, Duysens LNM, Wal HNvan der (1976) Function of three cytochromes in photosynthesis of whole cells of Rsp. rubrum as studied by flash spectroscopy. Biochim Biophys Acta 441: 169–187.

    Google Scholar 

  • Grondelle Rvan, Duysens LNM, Wal HNvan der (1977) Function and properties of a soluble c-type cytochrome c-551 in secondary photosynthetic electron transport in whole cells of Chr. vinosum as studied with flash spectroscopy. Biochim Biophys Acta 461: 188–201.

    Google Scholar 

  • Harashima K, Hayasaki JI, Ikari T, Shiba T (1980) O2 stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21: 1283–1294.

    Google Scholar 

  • Hiraishi A, Hoshino Y, Satoh T (1991) Rhodoferax fermentans gen. no., sp. nov., a phototrophic purpule nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch Mocrobiol 155: 330–336.

    Google Scholar 

  • Hudig H, Kaufmann N, Drews G (1986) Respiratory deficient mutants of Rhodopseudomonas capsulata. Arch Microbiol 145: 378–385.

    Google Scholar 

  • Jackson JB (1988) Bacterial photosynthesis. In: Anthony C (ed) Bacterial energy transduction. Academic Press, London New York, pp 317–375.

    Google Scholar 

  • Jenney FE, Daldal F (1993) A novel membrane associated c-type cytochrome, cyt c y, can mediate the photosynthetic growth of Rb. capsulatus and R. sphaeroides. EMBO J 12: 1283–1293.

    Google Scholar 

  • Joliot P, Vermeglio A, Joliot A (1989) Evidence for supercomplexes between reaction centers, cytochrome c 2 and bc1 complex in Rb. sphaeroides whole celles. Biochim Biophys Acta 975: 336–345.

    Google Scholar 

  • Jones M, Mc Ewan A, Jackson B (1990) The role of c-type cytochromes in the photosynthetic electron transport pathway of Rb. capsulatus. Biochim Biophys Acta 1019: 59–66.

    Google Scholar 

  • Junge W, Jackson JB (1982) The development of electrical potential gradients across photosynthetic membranes. In: Govindjee (ed) Photosynthesis: energy conversion in plants and bacteria, vol 1 Academic Press, London New York, pp 589–646.

    Google Scholar 

  • Kampf C, Wynn RM, Shaw RW, Knaff DB (1987) The electron transfer chain of aerobically grown Rps. viridis. Biochim Biophys Acta 894: 228–238.

    Google Scholar 

  • Keister D (1978) Respiration vs. photosynthesis. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 849–856.

    Google Scholar 

  • Keister DL, Minton MJ (1971) Effect of light on respiration in Rsp. rubrum. In: Quagliariello E, Papa S, Rossi CS (eds) Energy transduction in respiration and photosynthesis. Adratica Editrice, Bari, pp 375–384.

    Google Scholar 

  • Klemme J-H (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph R. capsulata. Z Naturforsch 24: 67–76.

    Google Scholar 

  • Knaff DB (1978a) Reducing potentials and the pathway of NAD+ reduction. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 629–640.

    Google Scholar 

  • Knaff DB, (1978b) Active transport in the photosynthetic bacterium Chr. vinosum. Arch Biochem Biophys 189: 225–230.

    Google Scholar 

  • Knaff DB, Whestone R, Carr JW (1980) The role of soluble cytochrome c551 in cyclic-electron flow driven active transport in Chr. vinosum. Biochim Biophys Acta 590: 50–58.

    Google Scholar 

  • Kranz RG (1989) Isolation of mutants and genes involved in cytochromes c biosynthesis in Rb. capsulatus. J Bacteriol 171: 456–464.

    Google Scholar 

  • Kuo L-M, Davies HC, Smith L (1985) Monoclonal antibodies to cytochrome c from Paracoccus denitrificans: effects on electron transport reactions. Biochim Biophys Acta 809: 388–395.

    Google Scholar 

  • LaMonica R, Marrs BL (1976) Branched respiratory system of the photosynthetically grown Rps. capsulata. Biochim Biophys Acta 423: 431–439.

    Google Scholar 

  • Lavorel J, Richaud P, Vermeglio A (1989) Interaction of photosynthesis and respiration in Rhodospirillaceae: evidence for two functionally distinct bc1 complex fractions. Biochim Biophys Acta 973: 290–295.

    Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York Chichester Brisbane, pp 39–111.

    Google Scholar 

  • Madigan MT, Brock TD (1977) “Chlorobium-type” vesicles of photosynthetically-grown Chloroflexus aurantiacus observed using negative staining techniques. J Gen Microbiol 102: 279–285.

    Google Scholar 

  • Marrs BL, Gest H (1973) Genetic mutations affecting the respiratory electron transport system of the photosynthetic bacterium Rps. capsulata. J Bacteriol 114: 1045–1051.

    Google Scholar 

  • Matner R, Sherman F (1982) Differential accumulation of two apo-iso-cytochrome c in processing mutants of yeast. J Biol Chem 257: 9811–9821.

    Google Scholar 

  • Matsura K, Fukushima A, Shimada K, Satoh T (1988) Direct and indirect electron transfer from cytochromes c and c 2 to the photosynthetic reaction center in pigment-protein complexes isolated from Rc. gelatinosus. FEBS Lett 237: 21–25.

    Google Scholar 

  • McCarthy JEG, Ferguson SJ (1982) Respiratory control and the basis of light-induced inhibition of respiration in chromatophores from Rps. capsulata. Biochem Biophys Res Commun 107: 1406–1411.

    Google Scholar 

  • Merchant S, Bogorad L (1986) Regulation by coper of the expression of plastocyanin and cytochrome c 552 in Chlamidomonas reinhardtii. Mol Cell Biol 6: 462–469.

    Google Scholar 

  • Merchant S, Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the copper dependent expression of cyt c 552. EMBO J 6: 2531–2535.

    Google Scholar 

  • Meyer T, Cusanovich M (1989) Structure, function and distribution of bacterial redox proteins. Biochim Biophys Acta 975: 1–28.

    Google Scholar 

  • Michels PM, Haddock BA (1980) Cytochrome c deficient mutants of Rps. capsulata. FEBS Lett 113: 289–293.

    Google Scholar 

  • Niel CBvan (1944) The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118.

    Google Scholar 

  • Nitschke W, Rutherford AW (1989) Tetraheme cytochrome c subunit of Rps. viridis characterized by EPR. Biochemistry 28: 3161–3168.

    Google Scholar 

  • Oelze J, Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265: 209–239.

    Google Scholar 

  • Overfield RC, Wraight CA, DeVault D (1979) Microsecond photooxidation kinetics of cytochrome c 2 from Rps. sphaeroides: in vivo and solution studies. FEBS Lett 105: 137–142.

    Google Scholar 

  • Packam NK, Berriman JA, Jackson JB (1978) The charging capacitance of the chromatophore membrane. FEBS Lett 89: 205–210.

    Google Scholar 

  • Pierson BK, Castenholz RW (1978) Photosynthetic apparatus and cell membranes of green bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 179–197.

    Google Scholar 

  • Pfennig N (1978) General physiology and ecology of photosynthetic bacteria. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 3–18.

    Google Scholar 

  • Pfennig N, Trüper H (1977) The Rhodospirillales (phototrophic or photosynthetic bacteria). CRC handbook of microbiology, vol 1. CRC Press, Boca Raton Fl.

    Google Scholar 

  • Prince RC (1990) Bacterial photosynthesis: from photons to Dp. In: Krulwich TA (eds) The bacteria, vol XII. Academic Press, New York, pp 111–149.

    Google Scholar 

  • Prince RC, Daldal F (1987) Physiological electron donors to the photochemical reaction center of Rb. capsulatus. Biochim Biophys Acta 894: 370–378.

    Google Scholar 

  • Prince RC, Baccarini Melandri A, Crofts AR, Hauska GA, Melandri BA (1975) Asimmetry of an energy transducing membrane. Location of cytochrome c 2 in R. sphaeroides and Rps. capsulata. Biochim Biophys Acta 387: 212–227.

    Google Scholar 

  • Prince RC, Dutton PL, Clayton BJ, Clayton RK (1978) Properties of the reaction center of Rps. gelatinosa in situ and in a detergent solubilized form. Biochim Biophys Acta 502: 354–358.

    Google Scholar 

  • Prince RC, Davidson E, Haith C, Daldal F (1986) Photosynthetic electron transfer in the absence of cytochrome c 2 in Rps. capsulata: cyt c 2 is not essential for electron flow from the cyt bc1 complex to the photochemical reaction center. Biochemistry 25: 5208–5212.

    Google Scholar 

  • Ramirez J, Smith L (1968) Synthesis of adenosine triphosphate in intact cells of Rsp. rubrum and Rps. sphaeroides on oxygenation or illumination. Biochim Biophys Acta 153: 466–479.

    Google Scholar 

  • Richaud R, Marrs BL, Vermeglio A (1986) Two modes of interaction between photosynthetic and respiratory chains in whole cells of Rps. capsulata. Biochim Biophys Acta 850: 256–263.

    Google Scholar 

  • Robertson DE, Dutton PL (1988) The nature and magnitude of the charge-separation reactions of ubiquinol cytochrome c 2 oxidoreductase. Biochim Biophys Acta 935: 273–291.

    Google Scholar 

  • Rott M, Donohue TJ (1990) R. sphaeroides spd mutations allow cyt c 2-independent photosynthetic growth. J Bacteriol 172: 1954–1961.

    Google Scholar 

  • Rott MA, Witthuhn VC, Shilke BA, Soranno M, Ali A, Donohue TJ (1993) Genetic evidence for the role of the isocytochrome c 2 in photosynthetic growth of Rb. capsulatus spd mutants. J Bacteriol 175: 358–366.

    Google Scholar 

  • Rugolo M, Zannoni D (1983) Oxygen induced inhibition of light dependent uptake of tetraphenylphosphonium ions as a probe of a direct interaction between photosynthetic and respiratory components in cells of Rps. capsulata. Biochem Biophys Res Commun 113: 155–162.

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38: 43–45.

    Google Scholar 

  • Shill DA, Wood PM (1984) A role for cytochrome c 2 in Rhodopseudomonas viridis. Biochim Biophys Acta 764: 1–7.

    Google Scholar 

  • Sone N, Sekimachi M, Kutoh E (1987) Identification and properties of a quinol oxidase super complex composed of a bc1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem 262: 15386–15391.

    Google Scholar 

  • Staehelin LA, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119: 269–267.

    Google Scholar 

  • Thore A, Keister DL, San Pietro A (1969) Studies on the respiratory system of aerobically (dark) and anerobically (light) grown Rsp. rubrum. Arch Mikrobiol 67: 378–396.

    Google Scholar 

  • Trost JT, McManus JD, Freeman JC, Ramakrishna BL, Blankenship RE (1988) Auracyanin, a blue copper protein from the green photosynthetic bacterium Chl. aurantiacus. Biochemistry 27: 7858–7863.

    Google Scholar 

  • Venturoli G, Fernandez-Velasco JG, Crofts AR, Melandri BA (1988) The effect of the size of the quinone pool on the electrogenic reactions in the ubiquinol-cytochrome c 2 oxido reductase of Rb. capsulatus. Biochim Biophys Acta 935: 258–272.

    Google Scholar 

  • Venturoli G, Gabellini N, Oesterhelt D, Melandri BA (1990) Kinetics of photosynthetic electron transfer in artificial vesicles reconstituted with purified complexes from Rb. capsulatus. II. Direct electron transfer between the reaction center and the cyt bc1 complex and role of cyt c 2. Eur J Biochem 189: 95–103.

    Google Scholar 

  • Vermeglio A (1977) Secondary electron transfer in reaction centers of Rhodopseudomonas viridis. Out-of-phase periodicity of two for the formation of ubisemiquinone and fully reduced quinone. Biochim Biophys Acta 459: 516–524.

    Google Scholar 

  • Vernon LP, Kamen MD (1953) Studies on the metabolism of photosynthetic bacteria, Photo-autooxidation of ferrocytochrome c in extracts of R. rubrum. Arch Biochem Biophys 44: 298–311.

    Google Scholar 

  • Vliet Pvan, Zannoni D, Nitschke W, Rutherford AW (1991) Membrane bound cytochromes in Chl aurantiacus studied by EPR. Eur J Biochem 199: 317–323.

    Google Scholar 

  • Weyer KA, Lottspeich F, Schafer W, Michel H (1987) The fatty acid-anchored four heme cytochrome of the photosynthetic reaction center from the purple bacterium Rps. viridis. In: Papa S, Chance B, Ernster L (eds) Cytochrome systems, molecular biology and bioenergetics. Plenum Press, New York, pp 325–331.

    Google Scholar 

  • Wraight C (1977) Electron acceptors of photosynthetic bacterial reaction centers. Direct observation of oscillatory behaviour suggesting two closely equivalent ubiquinones. Biochim Biophys Acta 459: 525–531.

    Google Scholar 

  • Wynn RM, Kampf C, Gaul DF, Choi W-K, Shaw RW, Knaff DB (1985) The membrane bound electron transfer components of aerobically grown Ch. vinosum Biochim Biophys Acta 808: 85–93.

    Google Scholar 

  • Wynn RM, Redlinger TE, Foster JM, Blankenship RE, Fuller RC, Shaw RW, Knaff DB (1987) Electron-transport chains of phototrophically and chemotrophically grown Chl. aurantiacus. Biochim Biophys Acta 891: 216–226.

    Google Scholar 

  • Zannoni D (1982) ATP synthesis coupled to light-dependent non-cyclic electron flow in chromatophores of Rps. capsulata. Biochim Biophys Acta 680: 1–7.

    Google Scholar 

  • Zannoni D (1986a) The branched respiratory chain of heterotrophically dark-grown Chloroflexus aurantiacus. FEBS Lett 188: 119–124.

    Google Scholar 

  • Zannoni D (1986b) Respiration vs. photosynthesis in membranes from the thermophilic green photosynthetic bacterium Chl. aurantiacus. 4th Eur Bio Energ Conference, p. 139.

  • Zannoni D, Baccarini Melandri A (1980) Respiratory electron flow in facultative photosynthetic bacteria. In: Knowles CJ (ed) Diversity of bacterial respiratory systems. CRC Press, Boca Raton Fl, pp 183–202.

    Google Scholar 

  • Zannoni D, Fuller RC (1988) The functional and spectral characterization of the respiratory chain of Chl. aurantiacus grown under oxygen-saturated conditions. Arch Microbiol 150: 368 to 373.

    Google Scholar 

  • Zannoni D, Ingledew JW (1985) A thermodynamic analysis of the plasma membrane electron transport components in photoheterotrophically grown cells of Chl. aurantiacus. FEBS Lett 193: 93–98.

    Google Scholar 

  • Zannoni D, Venturoli G (1988) The mechanism of photosynthetic electron transport and energy transduction by membrane fragments from Chl. aurantiacus. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Truper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 135–143.

    Google Scholar 

  • Zannoni D, Melandri BA, Baccarini Melandri A (1976) Energy transduction in photosynthetic bacteria. Composition and function of the branched oxidase system in wild-type and respiratory deficient mutants of Rps. capsulata. Biochim Biophys Acta 423: 413–430.

    Google Scholar 

  • Zannoni D, Jasper P, Marrs BL (1978) Light induced oxygen reduction as a probe of electron transport between respiratory and photosynthetic components in membranes of Rps. capsulata. Arch Biochem Biophys 191: 625–631.

    Google Scholar 

  • Zannoni D, Prince RC, Dutton PL, Marrs BL (1980) Isolation and characterization of a cytochrome c 2 deficient mutant of Rps. capsulata. FEBS Lett 113: 289–293.

    Google Scholar 

  • Zannoni D, Peterson S, Marrs BL (1986) Recovery of the alternative oxidase dependent electron flow by fusion of membrane vesicles from Rp. capsulatus mutant strains. Arch Microbiol 144: 375–380.

    Google Scholar 

  • Zannoni D, Venturoli G, Daldal F (1992) The role of the membrane bound cytochromes of b- and c-type in the electron transport chain of Rp. capsulatus. Arch Microbiol 157: 367–374.

    Google Scholar 

  • Zehnder AJB (1988) Biology of anaerobic microorganisms. Wiley, New York.

    Google Scholar 

  • Zhang L, Mc Spadden B, Pakrasi H, Withmarsch J (1992) Copper mediated regulation of cyt c553 and plastocyanin in the cyanobacterium Synechococcus 6803. J Biol Chem 267: 19054–19059.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zannoni, D., Daldal, F. The role of c-type cytochromes in catalyzing oxidative and photosynthetic electron transport in the dual functional plasmamembrane of facultative phototrophs. Arch. Microbiol. 160, 413–423 (1993). https://doi.org/10.1007/BF00245301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245301

Keywords

Navigation