Archives of Microbiology

, Volume 157, Issue 2, pp 176–182 | Cite as

Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities

  • M. J. Teunissen
  • E. P. W. Kets
  • H. J. M. Op den Camp
  • J. H. J. Huis in't Veld
  • G. D. Vogels
Original Papers


Neocallimastix strain N1, an isolate from a ruminant (sheep), was cocultured with three Methanobacterium formicicum strains, Methanosarcina barkeri, and Methanobrevibacter smithii. The coculture with Methanobacterium formicicum strains resulted in the highest production of cellulolytic and xylanolytic enzymes. Subsequently four anaerobic fungi, two Neocallimastix strains (N1 and N2) from a ruminant and two Piromyces species from non-ruminants (E2 and R1), were grown in coculture with Methanobacterium formicicum DSM 3637 on filter paper cellulose and monitored over a 7-day period for substrate utilisation, fermentation products, and secretion of cellulolytic and xylanolytic enzymes. Methanogens caused a shift in fermentation products to more acetate and less ethanol, lactate and succinate. Furthermore the cellulose digestion rate increased by coculture. For cocultures of Neoallimastix strains with Methanobacterium formicicum strains the cellulolytic and xylanolytic enzyme production increased. Avicelase, CMCase and xylanase were almost completely secreted into the medium, while 40–60% of the β-glucosidase was found to be cell bound. Coculture had no significant effect on the location of cellulolytic and xylanolytic enzymes.

Key words

Anaerobic fungi Methanogenic bacteria Coculture Neocallimastix Cellulase secretion Enzyme location 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bauchop T, Mountfort DO (1981) Cellulose fermentation by a rumen anaerobic fungus in both the absence and presence of rumen methanogens. Appl Environ Microbiol 42: 1103–1110PubMedPubMedCentralGoogle Scholar
  2. Hungate RE (1966) The rumen and its microbes. Academic Press, New York LondonGoogle Scholar
  3. Hungate RE (1982) Methane formation and cellulose digestion —biochemical ecology and microbiology of the rumen ecosystem. Experimenta 38: 189–192CrossRefGoogle Scholar
  4. Joblin KN, Naylor GE, Williams AG (1990) Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl Environ Microbiol 56: 2287–2295PubMedPubMedCentralGoogle Scholar
  5. Joblin KN, Williams AG (1991) Effect of cocultivation of ruminal chytrid fungi with Methanobrevibacter smithii on lucerne stem degradation and extracellular fungal enzyme activities. Lett Appl. Microbiol 12: 121–124CrossRefGoogle Scholar
  6. Lowe SE, Theodorou MK, trinci APJ (1987) Cellulases and xylanase of an anaerobic rumen fungus grown on wheat straw, wheat straw holocellulose, cellulose, and xylan. Appl Environ Microbiol 53: 1216–1223PubMedPubMedCentralGoogle Scholar
  7. Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7: 223–229CrossRefGoogle Scholar
  8. Marvin-Sikkema FD, Richardson AJ, Steward CS, Gottschal JC, Prins RA (1990) Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ Microbiol 56: 3793–3797PubMedPubMedCentralGoogle Scholar
  9. Mountfort DO, Asher RA, Bauchop T (1982) Fermentation of cellulose to methane by a rumen anaerobic fungus in a triculture with Methanobrevibacter sp. strain R1 and Methanosarcina barkeri. Appl Environ Microbiol 44: 128–134PubMedPubMedCentralGoogle Scholar
  10. Mountfort DO, Asher RA, (1985) Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis. Appl Environ Microbiol 49: 1314–1322PubMedPubMedCentralGoogle Scholar
  11. Munn EA, Orpin CG, Greenwood CA (1988) The ultrastructure and the possible relationships of four obligate anaerobic chytridiomycete fungi from the rumen of sheep. BioSystem 22: 67–81CrossRefGoogle Scholar
  12. Orpin CG (1988) Nutrition and biochemistry of anaerobic Chytridiomycetes. BioSystems 21: 365–370CrossRefGoogle Scholar
  13. Pearce PD, Bauchop T (1985) Glycosidases of the rumen anaerobic fungus Neocallimastix frontalis grown on cellulosic substrates. Appl Environ Microbiol 49: 1265–1269PubMedPubMedCentralGoogle Scholar
  14. Reese ET (1977) Degradation of polymeric carbohydrates by microbial enzymes. Recent Adv Phytochem 11: 311–365Google Scholar
  15. Teunissen MJ, Marras SAE, Op den Camp HJM, Vogels GD (1989) An improved method for the quantification of alcohols, volatile fatty acids, and lactate or 2,3-butanediol in biological samples. J Microbiol Methods 10: 247–254CrossRefGoogle Scholar
  16. Teunissen MJ, Op den Camp HJM, Orpin CG, Huis in't Veld JHJ, Vogels GD (1991a) Comparison of Growth characteristics of anaerobic fungi from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol 137: 1401–1406CrossRefGoogle Scholar
  17. Teunissen MJ, Smits AAM, Op den Camp HJM, Huis in't Veld JHJ, Vogels GD (1991b) Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch Microbiol 156: 290–296CrossRefGoogle Scholar
  18. Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Chem 32: 420–424Google Scholar
  19. Williams AG, Orpin CG (1987) Polysaccharide-degrading enzymes formed by anaerobic rumen fungi grown on a range of carbohydrate substrates. Can J Microbiol 33: 418–426CrossRefGoogle Scholar
  20. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes of the rumen fungus Neocallimastix patriciarum. Biochem J 236: 729–739CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. J. Teunissen
    • 1
  • E. P. W. Kets
    • 1
  • H. J. M. Op den Camp
    • 1
  • J. H. J. Huis in't Veld
    • 2
  • G. D. Vogels
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of Nijmegen ToernooiveldNijmegenThe Netherlands
  2. 2.Department of BiotechnologyTNO Food and Nutrition ResearchZeistThe Netherlands

Personalised recommendations