Archives of Microbiology

, Volume 157, Issue 2, pp 131–134 | Cite as

Structure of the sugar-phosphate moiety of lipid A from lipooligosaccharide of Neisseria meningitidis group B, strain BC5S No. 125

Hydrolytic stability of phosphate and pyrophosphate substituents
  • Vyacheslav L. L'vov
  • Irina K. Verner
  • Larisa Yu. Musina
  • Alexander V. Rodionov
  • Anatoly V. Ignatenko
  • Alexander S. Shashkov
Original Papers


On the basis of chemical and NMR data the partial structure of lipid A from lipooligosaccharide (LOS) of Neisseria meningitidis group B, strain BC5S No 125 was established. Lipid A consisted of disaccharide 2-deoxy-6-O-[2-deoxy-2-(3-hydroxytetradecanoylamino)-β-gluco-pyranosyl]-2-(3-hydroxytetradecanoylamino)-α-glucopyranose carrying the β-(2-aminoethyl)pyrophosphate residue at 0–4′ and the pyrophosphate or phosphate residue at 0–1. On hydrolysis of the acidic form of LOS with 1% acetic acid the substituent at 0–1 was practically completely removed whereas that at 0–4′ was stable. The analogous hydrolysis of the Mg-salt of LOS was accompanied by splitting off the pyrophosphate linkage in the substituent at 0–4′. Hydrolysis of LOS at pH 4.5 in the presence of SDS led mainly to a lipid A preparation retaining both pyrophosphate residues.

Key words

Neisseria meningitidis Lipooligosaccharide Lipid A Polar substituents Hydrolysis Partial structure 



2-keto-3-deoxyoctulosonic acid


preparations of lipid A




the acidic form of LOS




thin-layer chromatography


gas-liquid chromatography/mass spectrometry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlett GR (1959) Phosphorous assay in column chromatography. J Biol Chem 234: 466–468, 469–471Google Scholar
  2. Caroff M, Tacken A, Szabo L (1988) Detergent-accelerated hydrolysis of bacterial endotoxins and determination of the anomeric configuration of the glycosyl phosphate present in the “isolated lipid A” fragment of the Bordetella pertussis endotoxin. Carbohydr Res 175: 273–282CrossRefGoogle Scholar
  3. Hakomori S (1964) Rapid permethylation of glycolipids and polysaccharides by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem (Tokyo) 55: 205–208Google Scholar
  4. Helander IM, Lindner B, Brade H, Altman K, Lindberg AA, Rietschel ET, Zahringer U (1988) Chemical structure of the lipopolysaccharide of Haemophilus influenzae strain I-69 Rd-/b+. Description of a novel deep-rough chemotype. Eur J Biochem 3: 483–492CrossRefGoogle Scholar
  5. Jennings HJ, Hawes GB, Adams GA, Kenny CP (1973) The chemical composition and serological reactions of lipopolysaccharides from serogroups A, B, X and Y Neisseria meningitidis. Can J Biochem 51: 1347–1354CrossRefGoogle Scholar
  6. Jennings HJ, Johnson KG, Kenne L (1983) The structure of an R-type oligosaccharide core obtained from some lipopolysac-charides of Neisseria meningitidis. Carbohydr Res 121: 233–241CrossRefGoogle Scholar
  7. Osborne MJ (1963) Studies on the gram negative cell wall. Evidence for the role of 2-keto-3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc Natl Acad Sci USA 50: 499–506CrossRefGoogle Scholar
  8. Parr TR, Bryan LE (1984) Lipopolysaccharide banding patterns of Neisseria meningitidis and Neisseria gonorrhoeae. J Clin Microbiol 19: 558–560PubMedPubMedCentralGoogle Scholar
  9. Petersen AA, McGroarty EJ (1985) High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota and Escherichia coli. J Bacteriol 162: 738–745Google Scholar
  10. Rietschel ET, Wollenweber HW, Brade H, Zahringer U, Lindner B, Seydel U, Bradaczek H, Barnickel G, Labischinski H, Giesbrecht H (1984) Structure and conformation of the lipid A component of lipopolysaccharides. In: Rietschel ET (ed) Handbook of endotoxin, vol, 1. Elsevier, Amsterdam, pp 187 to 220Google Scholar
  11. Rodionov AV (1988) Amino acid analysis of proteins and physiological fluids in a single system of sodium citrate buffers. Bioorg Khim (USSR) 14: 581–588Google Scholar
  12. Rosner MR, Khorana HG, Satterthwait AC (1979) The structure of lipopolysaccharide from a heptose-less mutant of Escherichia coli K-12. II. The application of 31P NMR spectroscopy. J Biol Chem 254: 5918–5925Google Scholar
  13. Takayama K, Qureshi N, Hyyer K, Honovich J, Cotter RJ, Mascagni P, Schneider H (1986) Characterisation of a structural series of lipid A obtained from the lipopolysaccharides of Neisseria gonorrhoeae J Biol Chem 261: 10624–10631PubMedGoogle Scholar
  14. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119: 115–119CrossRefGoogle Scholar
  15. Tsai GM, Boykins R, Frasch CE (1983) Heterogeneity and variation among Neisseria meningitidis lipopolysaccharides. J Bacteriol 125: 498–504Google Scholar
  16. Westphal O, Jann K (1965) Bacterial lipopolysaccharides. Extraction with phenol-water and further application of the procedure. Methods Carbohydr Chem 5: 88–91Google Scholar
  17. Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol. 1. Academic Press, London, pp 299–488Google Scholar
  18. Zollinger WD, Mandrell RE (1980) Type-specific antigens of group A Neisseria meningitidis: lipopolysaccharide and heat-modifiable outer membrane proteins. Infect Immun 28: 451–458PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Vyacheslav L. L'vov
    • 1
  • Irina K. Verner
    • 1
  • Larisa Yu. Musina
    • 2
  • Alexander V. Rodionov
    • 3
  • Anatoly V. Ignatenko
    • 4
  • Alexander S. Shashkov
    • 4
  1. 1.Institute of ImmunologyMinistry of Health of the USSRMoscowUSSR
  2. 2.M. M. Schemyakin Institute of Bioorganic ChemistryAcademy of Science of the USSRMoscowUSSR
  3. 3.N. F. Gamaleya Institute of Epidemiology and MicrobiologyAcademy of Medical Sciences of the USSRMoscowUSSR
  4. 4.N. D. Zelinsky Institute of Organic ChemistryAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations