Skip to main content
Log in

Isolation and characterization of Zymomonas mobilis mutants resistant to octadecyltrimethylammonium chloride, a detergent acting on hopanoid-producing bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Growth of the hopanoid-producing bacterium Zymomonas mobilis was inhibited at low concentrations of the cationic detergent octadecyltrimethylammoniumchloride (OTAC). A relationship between sensitivity of Zymomonas mobilis to OTAC, presence of hopanoids and ethanol tolerance was postulated. Mutants resistant to OTAC were isolated from strains ZM1 and ZM4. They did not present any alteration of the hopanoid content and their squalene cyclases showed the same sensitity to OTAC as the parent enzymes. Resistance to OTAC paralleled pleiotropic effects including, enhanced accessibility of the membrane-bound alkaline phosphatase, important release of proteins from cells by Tris/HCl treatment, increased resistance to antibiotics and increased sensitivity to ethanol. In addition, OTACR mutants were also characterized by the synthesis or the overproduction of an outer membrane protein (F53) not detected on 2D-PAGE maps of parent strains and by a normal heat shock response. The role of hopanoids, heat shock proteins, protein F53 and membrane organization in ethanol tolerance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

OTAC:

octadecyltrimethylammoniumchloride

SLS:

sodium lauryl sarcosinate

References

  • Angus BL, Carey AM, Caron DA, Kropinski AMB, Hancock REW (1982) Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother 21:299–309

    Article  CAS  Google Scholar 

  • Barrow KD, Grant-Collins J, Rogers PL, Smith GM (1983) Lipid composition of ethanol tolerant Zymomonas mobilis. Biochem Biophys Acta 753:324–330

    Article  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  • Bayer MH, Keck W, Bayer ME (1990) Localization of penicillin-binding protein 1b in Escherichia coli: immunoelectron microscopy and immunotransfer studies. J Bacteriol 172:125–135

    Article  CAS  Google Scholar 

  • Berger B, Carty CE, Ingram LO (1980) Alcohol-induced changes in the phospholipid molecular species of Escherichia coli. J Bacteriol 142:1040–1044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisseret P, Wolff G, Albrecht A-M, Tanaka T, Nakatani Y, Ourisson G (1983) A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and dihydroxycarotenoids. Biochem Biophys Res Commun 110:320–324

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol 37:911–917

    CAS  Google Scholar 

  • Bringer S, Härtner T, Poralla K, Sahm H (1985) Influence of ethanol on the hopanoid content and the fatty acid pattern in batch and continuous cultures of Zymomonas mobilis. Arch Microbiol 140:312–316

    Article  CAS  Google Scholar 

  • Carey VC, Ingram LO (1983) Lipid composition of Zymomonas mobilis. Effects of ethanol and glucose. J Bacteriol 154:1291–1300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biano M, LaBivic A, Hirn M (1987) A method for the production of highly specific polyclonal antibodies. Anal Biochem 166:224–229

    Article  Google Scholar 

  • Enequist HG, Hirst TR, Harayama S, Hardy SJS, Randall LL (1981) Energy is required for maturation of exported proteins in Escherichia coli. Eur J Biochem 116:227–233

    Article  CAS  Google Scholar 

  • Filip C, Fletcher G, Wulff JL, Earhart CF (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium lauryl sarcosinate. J Bacteriol 115:717–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flesch G, Rohmer M (1987) Growth inhibition of hopanoid synthesizing bacteria by squalene cyclase inhibitors. Arch Microbiol 147:100–104

    Article  CAS  Google Scholar 

  • Flesch G, Rohmer M (1989) Prokaryotic triterpenoids. A novel hopanoid from the ethanol-producing bacterium Zymomonas mobilis. Biochem J 262:673–675

    Article  CAS  Google Scholar 

  • Foulds J (1976) tolF locus in Escherichia coli: chromosomal location and relationships to loci cmlB and tolD. J Bacteriol 128:604–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock REW (1984) Alterations of outer membrane permeability. Ann Rev Microbiol 38:237–264

    Article  CAS  Google Scholar 

  • Hayashida S, Ohta K (1980) Effects of phosphatidyl-choline or ergosteryloleate on physiological properties of Saccharomyces cerevisiae. Agric Biol Chem 114:2561–2567

    Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohol. J Bacteriol 125:670–678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Vreeland NS (1980) Differential effects of ethanol and hexanol on the E. coli cell envelope. J Bacteriol 144:481–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:254–290

    Google Scholar 

  • Irvin RT, Mac Alister TJ, Costerton JW (1981) Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. J Bacteriol 145:1397–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishidate K, Creeger ES Zrike J, Deb S, Glauner B, Mac Alister TJ, Rothfield LI (1986) Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the envelope. J Biol Chem 261:428–443

    CAS  PubMed  Google Scholar 

  • Jones RP (1989) Biological principles for the effects of ethanol. Enzyme Microb Technol 11:130–153

    Article  CAS  Google Scholar 

  • Kannenberg E, Poralla K, Blume A (1980) A hopanoid from the thermophilic Bacillus acidocaldarius condenses membranes. Naturwissenschaften 67:458–459

    Article  CAS  Google Scholar 

  • Kellenberger E (1990) The “Bayer bridges” confronted with results from improved electron microscopy methods. Mol Microbiol 4:697–705

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Michel GPF, Azoulay T, Starka J (1985) Ethanol effect on the membrane protein pattern of Zymomonas mobilis. Ann Inst Pasteur 136A:173–179

    Article  CAS  Google Scholar 

  • Michel GPF, Starka J (1986) Effect of ethanol and heat stresses on the protein pattern of Zymomonas mobilis. J Bacteriol 165:1040–1042

    Article  CAS  Google Scholar 

  • Michel GPF, Starka J (1987) Preferential synthesis of stress proteins in stationary Zymomonas mobilis cells. FEMS Microbiol Lett 43:361–365

    Article  CAS  Google Scholar 

  • Michel GPF, Baratti J (1979) Phosphate-irrepressible alkaline phosphatase of Zymomonas mobilis. J Gen Microbiol 135:453–460

    Google Scholar 

  • Misra R, Benson SA (1989) A novel mutation cog, which results in production of a new porin protein (OmpG) of Escherichia coli K12. J Bacteriol 171:4105–4111

    Article  CAS  Google Scholar 

  • Neidhardt FC, VanBogelen RA, Vaughn V (1984) The genetics and regulation of heat shock proteins. Ann Rev Genet 18:295–329

    Article  CAS  Google Scholar 

  • Ochs D, Tappe CH, Gärtner P, Kellner R, Poralla K (1990) Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius. Eur J Biochem 194:75–80

    Article  CAS  Google Scholar 

  • O'Farrell PH (1975) High resolution two dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta K, Supanwong K, Hayashida S, (1981) Environmental effects on ethanol tolerance of Zymomonas mobilis. J Ferment Technol 59:435–439

    CAS  Google Scholar 

  • Osman YA, Ingram LO (1985) Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4. J Bacteriol 164:173–180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann Rev Microbiol 41:301–333

    Article  CAS  Google Scholar 

  • Poralla K, Kannenberg E, Blume A (1980) A glycolipid containing hopane isolated from the acidophilic Bacillus acidocaldarius, has a cholesterol-like function in membranes. FEBS Lett 113:107–110

    Article  CAS  Google Scholar 

  • Poralla K, Härtner T, Kannenberg E (1984) Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius. FEMS Microbiol Lett 23:253–256

    Article  CAS  Google Scholar 

  • Rogers PL Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84

    Google Scholar 

  • Rohmer M, Bouvier-Nave P, Ourisson G (1984) Distribution of hopanoid triterpenes in procaryotes. J Gen Microbiol 130:1137–1150

    CAS  Google Scholar 

  • Schaecterle GR, Pollach RL (1975) A simplified method for the quantitative assay of protein in biological material. Anal Biochem 51:654–655

    Article  Google Scholar 

  • Schmidt A, Bringer-Meyer S, Poralla K, Sahm H (1986) Effects of alcohols and temperature on the hopanoid content of Zymomonas mobilis. Appl Microbiol Biotechnol 25:32–36

    Article  CAS  Google Scholar 

  • Schulenberg-Schell H, Neuß B, Sahm H (1989) Quantitative determination of various hopanoids in microorganisms. Anal Biochem 181:120–124

    Article  CAS  Google Scholar 

  • Tahara Y, Ogawa Y, Sakakibara T, Yamada Y (1985) Phosphatidylethanolamine N-methyl-transferase from Zymomonas mobilis. Purification and characterization. Agric Biol Chem 50:257–259

    Google Scholar 

  • Tahara Y, Yuhara H, Yamada Y (1988) Distribution of tetrahydroxyhopane in the membrane fractions of Zymomonas mobilis. Agric Biol Chem 52:607–609

    CAS  Google Scholar 

  • Thomas DS, Hossack JA, Rose AH (1978) Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisae. Arch Microbiol 117:239–245

    Article  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Bittner AS, Grohman K (1982) Characterization of the total extractable lipids of Z. mobilis. Can J Microbiol 28:1107–1118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, G.P.F., Neuß, B., Tappe, C.H. et al. Isolation and characterization of Zymomonas mobilis mutants resistant to octadecyltrimethylammonium chloride, a detergent acting on hopanoid-producing bacteria. Arch. Microbiol. 157, 116–124 (1992). https://doi.org/10.1007/BF00245278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245278

Key words

Navigation