Archives of Microbiology

, Volume 157, Issue 2, pp 104–106 | Cite as

Effects of light on protein secretion in Neurospora crassa

  • Andreas Kallies
  • Saadat Mohsenzadeh
  • Ludger Rensing
Original Papers


The relative concentrations of secreted proteins in liquid cultures of Neurospora crassa differ in constant darkness compared to constant light (2500lx). Light reduces the concentrations of some polypeptides markedly and increases the concentrations of protein species of 67, 40, 18 and 13 kDa. The “blind” wc-2 mutant of Neurospora does not show light dependent differences in amounts of secreted proteins. One of the light-sensitive extracellular proteins is shown to be a protease of 17,5 kDa.

Key words

Light effect Extracellular proteins Protease Neurospora crassa Fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chambers JAA, Hinkelammert K, Russo VEA (1985) Lightregulated protein and poly-(A+)-mRNA synthesis in Neurospora crassa. EMBO J 13: 3649–3653CrossRefGoogle Scholar
  2. Cohen BL, Drucker H (1977) Regulation of exocellular protease in Neurospora crassa: induction and repression under conditions of nitrogen starvation. Arch Biochem Biophys 182: 601–613CrossRefGoogle Scholar
  3. Fiema J (1979) The hydroxyproline content in the mycelium of Aspergillus giganteus mut. alba. Bull Acad Pol Sci 27: 121–124Google Scholar
  4. Furukawa K, Hasunuma K, Shinohara Y (1987) Characterization of Pi-repressible enzymes secreted in culture media by Neurospora crassa wild-type cells and null-type mutants. J of Bacteriol 169: 4790–4795CrossRefGoogle Scholar
  5. Graafmans WDJ (1977) Effect of blue light on metabolism in Penicillium isariiforme. J Gen Microbiol 101: 157–161CrossRefGoogle Scholar
  6. Gressel J (1980) Blue light and transcription, In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 133–153CrossRefGoogle Scholar
  7. Gressel J, Rau W (1983) Photocontrol of fungal development, In: Shropshire W, Mohr H (eds) Photomorphogenesis. Encyclopedia of plant physiology 16b. Springer, Berlin Heidelberg New York, pp 603–639Google Scholar
  8. Hanson MA, Marzluf GA (1973) Regulation of a sulfur-controlled protease in Neurospora crassa. J Bacteriol 116: 785–789PubMedPubMedCentralGoogle Scholar
  9. Hashimoto J, Uchida T, Egami F (1971) Purification of ribonuclease U1 and some properties of ribonucleases U1 and N1. J Biochem 78: 903–911CrossRefGoogle Scholar
  10. Hasunuma K (1973) Repressible extracellular nucleases in Neurospora crassa. Biochim Biophys Acta 319: 288–293CrossRefGoogle Scholar
  11. Hasunuma K (1983) Repressible extracellular phosphodiesterases showing cyclic 2′,3′- and cyclic 3′,5′-nucleotide phosphodiesterase activities in Neurospora crassa. J Bacteriol 156: 291–300PubMedPubMedCentralGoogle Scholar
  12. Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing dodecyl sulfate and copolymerized substrates. Anal Biochem 102: 196–202CrossRefGoogle Scholar
  13. Horowitz NH (1947) Methionine synthesis in Neurospora. J Biol Chem 171: 255–264Google Scholar
  14. Laemmli HK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature 227: 680–685CrossRefGoogle Scholar
  15. Lindberg RA, Eirich LD, Price JS, Wolfinbarger L, Drucker H (1981) Alkaline protease from Neurospora crassa. J Biol Chem 256: 811–814PubMedGoogle Scholar
  16. Lindberg RA, Rhodes WG, Eirich LD, Drucker H (1982) Extracellular acid proteases from Neurospora crassa. J Bacteriol 150: 1103–1108PubMedPubMedCentralGoogle Scholar
  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the phenol reagent. J Biol Chem 139: 265–275Google Scholar
  18. Metzenberg RL (1979) Implications of some genetic control mechanisms in Neurospora. Microbiol Rev 43: 361–383PubMedPubMedCentralGoogle Scholar
  19. Nahas E, Terenzi HF, Rossi A (1982) Effect of carbon source and pH on the production and secretion of acid protease (EC and alkaline phosphatase (EC in Neurospora crassa. J Gen Microbiol 128: 2017–2021Google Scholar
  20. Neuhoff V, Stamm R, Eibl HJ (1985) Intensive Proteinfärbung ohne Hintergrund mit Coomassie Blau G-250 in Polyacrylamidgelen: Theorie und Praxis. Electrophoresis 6: 87–91 and 330–334CrossRefGoogle Scholar
  21. Piskorz-Bincycka B (1978) Studies on the organic acids content of the mycelia of Penicillium isariiforme. Acta Biol Cracov: 21–22Google Scholar
  22. Richter G (1984) Blue light effects on the level of translation and transcription. In: Senger H (ed) The blue light effects in biological systems. Springer, Berlin Heidelberg New York, pp 253–262CrossRefGoogle Scholar
  23. Russo VEA (1988) Blue light induces circadian rhythms in the bd mutant of Neurospora crassa: double mutants bd,wc-1 and bd,wc-2 are blind. J Photochem Photobiol 2: 59–65CrossRefGoogle Scholar
  24. Ruythers G (1980) Effects of blue light on enzymes. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 309–318Google Scholar
  25. Sommer T, Chambers JAA, Eberle J, Lauter FR, Russo VEA (1989) Fast light-regulated genes of Neurospora crassa. Nucleic Acids Res 14: 5713–5723CrossRefGoogle Scholar
  26. Tamaru H, Inoue H (1989) Isolation and characterization of a laccase-derepressed mutant of Neurospora crassa. J Bacteriol 171: 6288–6293CrossRefGoogle Scholar
  27. Turian G, Bianchi DE (1971) Conidiation in Neurospora crassa. Arch Mikrobiol 77: 262–274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Andreas Kallies
    • 1
  • Saadat Mohsenzadeh
    • 1
  • Ludger Rensing
    • 1
  1. 1.Institut für ZellbiologieBiochemie und Biotechnologie der UniversitätBremen 33Germany

Personalised recommendations