Skip to main content
Log in

Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The phycobilisomes and phycobiliproteins of Synechococcus sp. PCC 7002 wild-type strain PR6000 have been isolated and characterized. The hemidiscoidal phycobilisomes of strain PR6000 are composed of eleven different polypeptides: phycocyanin α and β subunits; allophycocyanin α and β subunits; α subunit of allophycocyanin B; the allophycocyanin β-subunit-like polypeptide of Mr 18 000; the linker phycobiliprotein of Mr 99 000; and non-chromophore-carrying linker polypeptides of Mr 33 000, 29 000, 9000, and 8000. Several of these polypeptides were purified to homogeneity and their amino acid compositions and amino-terminal amino acid sequences were determined. Analyses of the phycobiliproteins of Synechococcus sp. PCC 7002 were greatly facilitated by comparative studies performed with a mutant strain, PR6008, constructed to be devoid of the phycocyanin α and β subunits by recombinant DNA techniques and transformation of strain PR6000. The absence of phycocyanin did not greatly affect the allophycocyanin content of the mutant strain but caused the doubling time to increase 2–7-fold depending upon the light intensity at which the cells were grown. Although intact phycobilisome cores could not be isolated from this mutant, it is probable that functionally intact cores do exist in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SDS-PAGE:

polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate

2D-PAGE:

two-dimensional gel electrophoresis in which the first dimension consisted of isoelectric focusing in the presence of 8.0 M urea in the pH range 4–6 and the second dimension consisted of electrophoresis in the presence of sodium dodecylsulfate. The nomenclature employed for the phycobiliprotein subunits and linker polypeptides is that defined by Glazer (1985)

References

  • AndersonLK, EiserlingFA (1986) Asymmetrical core structure in phycobilisomes of the cyanobacterium Synechocystis 6701. J Mol Biol 191: 441–451

    Google Scholar 

  • AndersonLK, RaynerMC, EiserlingFA (1984) Ultra-violet mutagenesis of Synechocystis sp. 6701: mutations in chromatic adaptation and phycobilisome assembly. Arch Microbiol 138: 237–243

    Google Scholar 

  • BelknapWR, HaselkornR (1987) Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO J 6: 871–884

    Google Scholar 

  • BoussibaS, RichmondAE (1980) C-Phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125: 143–147

    Google Scholar 

  • BruceD, BrimbleS, BryantDA (1989) State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 974: 66–73

    Google Scholar 

  • BryantDA (1987) The cyanobacterial photosynthetic apparatus: comparison to those of higher plants and photosynthetic bacteria. In: PlattT, LiWKW (eds) Photosynthetic picoplankton. Canadian Bulletin of Fisheries and Aquatic Sciences, vol 214. Dept. of Fisheries and Oceans Ottawa, Canada, pp 423–500

    Google Scholar 

  • BryantDA (1988) Genetic analysis of phycobilisome biosynthesis, assembly, and function in the cyanobacterium Synechococcus sp. PCC 7002. In: StevensSEJr, BryantDA (eds) Light-energy transduction in photosynthesis: higher plant and bacterial models. American Soc Plant Physiologists, Rockville, MD, pp 62–90

    Google Scholar 

  • BryantDA (1990) Phycobilisomes of Synechococcus sp. PCC 7002: progress towards a complete structural and functional analysis via molecular genetics. In: BogoradL, VasilIK (eds) Cell culture and somatic cell genetics of plants, vol 7: The molecular biology of plastids and mitochondria. Academic Press, New York (in press)

    Google Scholar 

  • BryantDA, deLorimierR, GuglielmiG, StirewaltVL, CantrellA, StevensSEJr (1987) The cyanobacterial photosynthetic apparatus: a structural and functional analysis employing molecular genetics. In: BigginsJ (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff, Dordrecht, pp 749–755

    Google Scholar 

  • BryantDA, GlazerAN, EiserlingFA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110: 61–75

    Google Scholar 

  • BryantDA, GuglielmiG, Tandeau de MarsacN, CastesA-M, Cohen-BazireG (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123: 113–127

    Google Scholar 

  • BryantDA, Tandeau de MarsacN (1988) Isolation of genes encoding components of the photosynthetic apparatus. Methods Enzymol 167: 755–765

    Google Scholar 

  • BuzbyJS, PorterRD, StevensSEJr (1983) Plasmid transformation in Agmenellum quadruplicatum PR-6: Construction of biphasic plasmids and characterization of their transformation properties. J Bacteriol 154: 1446–1450

    Google Scholar 

  • BuzbyJS, PorterRD, StevensSEJr (1985) Expression of the Escherichia coli lacZ gene on a plasmid vector in a cyanobacterium. Science 230: 805–807

    Google Scholar 

  • Cohen-BazireG, BeguinS, RimonS, GlazerAN, BrownDM (1977) Physico-chemical and immunological properties of allophycocyanins. Arch Microbiol 111: 225–238

    Google Scholar 

  • Cohen-BazireG, BryantDA (1982) Phycobilisomes: composition and structure. In: CarnNG, WhittonBA (eds) The biology of the cyanobacteria. Blackwell Scientific, Oxford, pp 143–190

    Google Scholar 

  • DagertM, EhrlichSD (1979) Prolonged incubation in calcium chloride improves the competence of E. coli cells. Gene 6: 23–28

    Google Scholar 

  • deLorimierR, BryantDA, PorterRD, LiuW-Y, JayE, StevensSEJr (1984) Genes for the α and β subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946–7950

    Google Scholar 

  • deLorimierR, GuglielmiG, BryantDA, StevensSEJr (1990a) Structure and mutation of a gene encoding a Mr 33000 phycocyanin-associated linker polypeptide. Arch Microbiol 153: 541–549

    Google Scholar 

  • de Lorimier R, Bryant DA, Stevens SE Jr (1990 b) Genetic analysis of a 9 kDa phycocyanin-associated linker polypeptide. Biochim Biophys Acta (in press)

  • DukeCS, CezeauxA, AllenMM (1989) Changes in polypeptide composition of Synechocystis sp. strain 6308 phycobilisomes induced by nitrogen starvation. J Bacteriol 171: 1960–1966

    Google Scholar 

  • ElmorjaniK, ThomasJ-C, SebbanP (1986) Phycobilisomes of wild type and pigment mutants of the cyanobacterium Synechocystis PCC 6803. Arch Microbiol 146: 186–191

    Google Scholar 

  • FontanaA, DalzoppoD, GrandiC, ZamboninM (1981) Chemical cleavage of tryptophanyl and tyrosyl peptide bonds via oxidative halogenation mediated by o-iodosobenzoic acid. Biochemistry 20: 6997–7004

    Google Scholar 

  • GanttE (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    Google Scholar 

  • GanttE, CunninghamFXJr, LipschultzCA, MimuroM (1988) N-terminus conservation in the terminal pigment of phycobilisomes from a prokaryotic and eukaryotic alga. Plant Physiol 86: 996–998

    Google Scholar 

  • GardnerEE, StevensSEJr, FoxJL (1980) Purification and characterization of the C-phycocyanin from Agmenellum quadruplicatum. Biochim Biophys Acta 624: 187–195

    Google Scholar 

  • GingrichJC, LundellDJ, GlazerAN (1983) Core substructure in cyanobacterial phycobilisomes. J Cell Biochem 22: 1–14

    Google Scholar 

  • GlazerAN (1974) Phycocyanins: structure and function. Photochem Photobiol Rev 1: 71–115

    Google Scholar 

  • GlazerAN (1982) Phycobilisomes: Structure and dynamics. Annu Rev Microbiol 36: 173–198

    Google Scholar 

  • GlazerAN (1984) Phycobilisome. A macromolecular complex optimized for light energy transfer. Biochim Biophys Acta 768: 29–51

    Google Scholar 

  • GlazerAN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14: 47–77

    Google Scholar 

  • GlazerAN (1987) Phycobilisomes: assembly and attachment. In: FayP, VanBaalenC (eds) The cyanobacteria. Elsevier Biomedical, Amsterdam, pp 69–94

    Google Scholar 

  • GlazerAN (1988) Phycobiliproteins. Meth Enzymol 167: 291–303

    Google Scholar 

  • GlazerAN, BryantDA (1975) Allophycocyanin B (559-1 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch Microbiol 104: 15–22

    Google Scholar 

  • GlazerAN, WilliamsRC, YamanakaG, SchachmanHK (1979) Characterization of cyanobacterial phycobilisomes in zwitterionic detergents. Proc Natl Acad Sci USA 76: 6162–6166

    Google Scholar 

  • GrossmanAR, LemauxPG, ConleyPB, BrunsBU, AndersonLK (1988) Characterization of phycobiliprotein and linker polypeptide genes in Fremyella diplosiphon and their regulated expression during complementary chromatic adaptation. Photosyn Res 17: 23–56

    Google Scholar 

  • KallaSR, LindLK, GustafssonP (1989) Genetic analysis of phycobilisome mutants in the cyanobacterium Synechococcus species PCC 6301. Mol Microbiol 3: 339–347

    Google Scholar 

  • LaemmliUK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond) 227: 680–685

    Google Scholar 

  • LundellDJ, GlazerAN (1981) Allophycocyanin B. A common β subunit in Synechococcus allophycocyanin B (559-2 670 nm) and allophycocyanin (559-3 650 nm). J Biol Chem 256: 12600–12606

    Google Scholar 

  • LundellDJ, GlazerAN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 258: 894–901

    Google Scholar 

  • MacCollR, Guard-FriarD (1987) Phycobiliproteins. CRC Press, Boca Raton

    Google Scholar 

  • ManiatisT, FritschEF, SambrookJ (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • MaxsonP, SauerK, ZhouJ, BryantDA, GlazerAN (1989) Spectroscopic studies of cyanobacterial phycobilisomes lacking core polypeptides. Biochim Biophys Acta 977: 40–51

    Google Scholar 

  • O'FarrellPH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    Google Scholar 

  • PilotTJ, FoxJL (1984) Cloning and sequencing of the genes encoding the α and β subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA 81: 6983–6987

    Google Scholar 

  • PorterRD (1986) Transformation in cyanobacteria. CRC Crit Rev Microbiol 13: 111–132

    Google Scholar 

  • RapsS, KyciaJH, LedbetterMC, SiegelmanHW (1985) Light intensity adaptation and phycobilisome composition of Microcystis aeruginosa. Plant Physiol 79: 983–987

    Google Scholar 

  • RumbeliR, WirthM, SuterF, ZuberH, (1987) The phycobiliprotein 559-4 of the allophycocyanin core from the cyanobacterium Mastigocladus laminosus. Biol Chem Hoppe-Seyler 368: 1–9

    Google Scholar 

  • SchirmerT, HuberR, SchneiderM, BodeW, MillerM, HackertML (1986) Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting J Mol Biol 188: 651–676

    Google Scholar 

  • SchirmerT, BodeW, HuberR (1987) Refined three dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196: 677–695

    Google Scholar 

  • SchroederWA, SheltonJB, SheltonJR (1969) An examination of conditions for the cleavage of polypeptide chains with cyanogen bromide: application to catalase. Arch Biochem Biophys 130: 551–556

    Google Scholar 

  • SiegelmanHW, WieczorekGA, TurnerBC (1965) Preparation of calcium phosphate for protein chromatography. Anal Biochem 13: 402–404

    Google Scholar 

  • SouthernEM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    Google Scholar 

  • StevensSEJr, PattersonCOP, MyersJ (1973) The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9: 427–430

    Google Scholar 

  • SwankRT, MunkresKD (1971) Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem 39: 462–477

    Google Scholar 

  • Tandeau de MarsacN, Cohen-BazireG (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74: 1635–1639

    Google Scholar 

  • Tandeau de MarsacN, MazelD, DamervalT, GuglielmiG, CapuanoV, HoumardJ (1988) Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC 7601: light-harvesting complexes and cell differentiation. Photosyn Res 18: 99–132

    Google Scholar 

  • WehrmeyerW (1983) Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria, red algae, and cryptophytes. In: JensenU, FairbrothersDE (eds) Proteins and nucleic acids in plant systematics. Springer, Berlin Heidelberg New York, pp 143–167

    Google Scholar 

  • YamanakaG, GlazerAN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124: 39–47

    Google Scholar 

  • YamanakaG, GlazerAN (1981) Dynamic aspects of phycobilisome structure: modulation of phycocyanin content of Synechococcus phycobilisomes. Arch Microbiol 130: 23–30

    Google Scholar 

  • YamanakaG, GlazerAN, WilliamsRC (1978) Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem 253: 8303–8310

    Google Scholar 

  • ZilinskasBA, GreenwaldLS (1986) Phycobilisome structure and function. Photosyn Res 10: 7–35

    Google Scholar 

  • ZuberH (1987) The structure of light-harvesting pigment-protein complexes. In: BarberJ (ed) The light reactions. Elsevier Biomedical, Amsterdam, pp 197–259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, D.A., de Lorimier, R., Guglielmi, G. et al. Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch. Microbiol. 153, 550–560 (1990). https://doi.org/10.1007/BF00245264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245264

Key words

Navigation