Archives of Microbiology

, Volume 154, Issue 5, pp 483–488 | Cite as

Cell wall anionic polymers and peptidoglycan of Actinoplanes philippinensis VKM Ac-647

  • Irina B. Naumova
  • Nailya A. Yanushkene
  • Galina M. Streshinskaya
  • Alexander S. Shashkov
Original Papers


The cell wall of Actinoplanes philippinesis VKM Ac-647 harbours several carbohydrate-containing anionic polymers. (1) The main polymer of the wall is of a poly(glycosylglycerol phosphate) nature. Its monomeric units — O-α-d-mannopyranosyl-(1→4)-β-d-galactopyranosyl-(1→1)-glycerol monophosphates — are connected by phosphodiester bonds involving the hydroxyl groups at glycerol C3 and galactose C6. There also are chains without mannosyl substitutents. The teichoic acid structure has been established by chemical analysis and with 1H and 13C NMR spectroscopy. This is the first finding of a teichoic acid with mannosyl residues in a bacterial cell wall. (2) The phosphorylated mannan contains mannose and 2-O-methylmannose. Its core chain has α-1,2; α-1,3; and α-1,6 substitutions as revealed by 13C NMR spectroscopy.

The peptide unit of the peptidoglycan contains no l-alanine, instead of which position 1 is occupied by glycine; and diaminopimelic acid is represented, besides its meso- (or DD) form, by small amounts of its LL isomer.

Key words

Actinoplanes Teichoic acid 2-O-methylmannose Peptidoglycan 





glycerol-2 phosphate




total content of phosphorus


phosphorus mineralized in 7 min at 100°C


phosphorus of nucleic acids


stable phosphorus


trace amounts


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agapova SR, Yanushkene NA, Streshinskaya GM, Naumova IB (1987) The structure of peptidoglycan from Amorphosphorangium auranticolor VKM Ac-648. Microbiologiya (USSR) 56: 1036–1038Google Scholar
  2. Archibald AR (1972) Teichoic acids. In: Whistler RL, Bemiller JN (eds) Methods in carbohydrate chemistry. Academic Press, London 6: 162–172Google Scholar
  3. Armstrong JJ, Baddiley J, Buchanan JG (1960) Structure of the ribitol teichoic acid from the walls of Bacillus subtilis. Biochem J 76: 610–621CrossRefGoogle Scholar
  4. deBoer WR, Wouters JTM, Anderson AA, Archibald AR (1978) Further evidence for the structure of the teichoic acids from Bacillus stearothermophilus B65 and Bacillus subtilis var. niger WM. Eur J Biochem 85: 433–436CrossRefGoogle Scholar
  5. Burger MM, Glaser L (1966) The synthesis of teichoic acids. V. Polyglucosylglycerol phosphate and polygalactosylglycerol-phosphate. J Biol Chem 241: 494–506PubMedGoogle Scholar
  6. Dreywood R (1946) Qualitative determination of hydrocarbone compounds. Indust Engin Chem Anal 18: 499–503CrossRefGoogle Scholar
  7. Elliott TSJ, Ward JB, Rogers HJ (1975) Formation of cell wall polymers by reverting protoplasts of Bacillus licheniformis. J Bacteriol 124: 623–632PubMedPubMedCentralGoogle Scholar
  8. Evtushenko LI, Yanushkene NA, Streshinskaya GM, Naumova IB, Agre NS (1984) The occurrence of teichoic acids in the order Actinomycetales. Doklady Akad Nauk (USSR) 278: 237–239Google Scholar
  9. Gorin PAJ, Mazurek M (1975) Further studies on the assignment of signals in 13C magnetic resonance spectra of aldose and derived methyl glycosides. Can J Chem 53: 1212–1223CrossRefGoogle Scholar
  10. Hanahan DJ, Olley JN (1958) Chemical nature of monophosphoinositides. J Biol Chem 231: 813–828PubMedGoogle Scholar
  11. Hess HH, Derr JE (1975) Assay or inorganic and organic phosphorus in the 0.1–5 nanomole range. Anal Biochem 63: 607–613CrossRefGoogle Scholar
  12. Kanamaru K, Iwamuro Y, Mikami Y, Obi Y, Kisaki T (1982) 2-O-Methyl-d-mannose in an extracellular polysaccharide from Hyphomicrobium sp. Agric Biol Chem 46: 2419–2424Google Scholar
  13. Kawamoto I, Oka T, Nara T (1981) Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis and related organisms. J Bacteriol 146: 527–534PubMedPubMedCentralGoogle Scholar
  14. Kelemen MV, Baddiley J (1961) Structure of the intracellular glycerol teichoic acid from Lactobacillus casei ATCC 7469. Biochem J 80: 246–254CrossRefGoogle Scholar
  15. Kenne L, Lindberg B (1983) Bacterial polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic Press, London, pp 287–363CrossRefGoogle Scholar
  16. Kurganov AA, Tevlin AB, Davankov VA (1983) High-performance ligand-exchange chromatography of enantiomers studies on polystyrene-type chiral phases bonded to microparticulate silicas. J Chromatogr 261: 223–233CrossRefGoogle Scholar
  17. Nakamura T, Tamura G, Arima K (1977) Binding of polysaccharide to peptidoglycan in cell wall of Streptomyces roseochromogenes. Agric Biol Chem 41: 769–773Google Scholar
  18. Naumova IB, Agre NS, Skoblilova NK, Shashkov AS (1984) Polymers of the cell walls of Streptomyces roseoflavus var. roseofungini 1128 and its undifferentiated variant 1–68. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical, and biomedical aspects of Actinomycetes. Academic Press, London, pp 229–238CrossRefGoogle Scholar
  19. Naumova IB, Kuznetsov VD, Kudrina KS, Bezzubenkova AP (1980) The occurrence of teichoic acids in Streptomycetes. Arch Microbiol 126: 71–75CrossRefGoogle Scholar
  20. Naumova IB, Potekhina NV, Duigimbaye C, Shashkov AS, Terekhova LP, Preobrazhenskaya TP (1986) Cell wall polymers of Actinomadura carminata INA 4281. Arch Microbiol 146: 256–262CrossRefGoogle Scholar
  21. Naumova IB, Shashkov AS, Scoblilova NK, Agre NS, Romanov VV (1982) Lysylteichoic acid of the cell wall of Streptomyces roseofungini 1128. Bioorgan Khimiya (USSR) 8: 848–856Google Scholar
  22. Naumova IB, Shashkov AS, Stroganova MP (1978) Teichoic acid from the cell walls of Streptomyces kanamyceticus RIA 690 and the use of 13C NMR spectroscopy for the localization of phosphodiester linkages. Bioorgan Khimiya (USSR) 4: 1529–1537Google Scholar
  23. Palleroni NJ (1982/83) Biology of Actinoplanes. Actinomycetes 17: 46–65Google Scholar
  24. Patt SL, Shoolery JN (1982) Attached proton test for carbon-13 NMR. J Magn Reson 46: 535–539Google Scholar
  25. Schleifer KH, Seidl PH (1985) Chemical composition and structure of murein. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 201–219Google Scholar
  26. Stackebrandt E, Kroppenstedt R (1987) Union of the genera Actinoplanes Couch, Ampullariella Couch and Amorphosphorangium Couch in a redifined genus Actinoplanes. Syst Appl Microbiol 9: 110–114CrossRefGoogle Scholar
  27. Streshinskaya GM, Naumova IB, Panina LI (1979) Cell wall composition of Streptomyces chrysomallus producing the antibiotic aurantin. Mikrobiologiya (USSR) 48: 814–819Google Scholar
  28. Weil-Malherbe H, Green RH (1951) The catalytic effect of molybdate on the hydrolysis of organic phosphate. Biochem J 49: 286–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Irina B. Naumova
    • 1
  • Nailya A. Yanushkene
    • 1
  • Galina M. Streshinskaya
    • 1
  • Alexander S. Shashkov
    • 2
  1. 1.Department of BiologyMoscow State UniversityMoscowUSSR
  2. 2.N. D. Zelinsky Institute of Organic ChemistryUSSR Academy of SciencesMoscowUSSR

Personalised recommendations