Archives of Microbiology

, Volume 154, Issue 5, pp 417–421 | Cite as

Lithoautotrophic growth of the iron bacterium Gallionella ferruginea with thiosulfate or sulfide as energy source

  • Susanne Lütters-Czekalla
Original Papers


Gallionella ferruginea is able to utilize Fe(II) and the reduced sulfur compounds sulfide and thiosulfate as electron donor and energy source. Tetrathionate and elemental sulfur, on the other hand, are not metabolized. In sulfide-O2 microgradient cultures G. ferruginea grows at the interface between the oxidizing and the reducing zones. Optimal growth depends on low oxygen and sulfide concentrations. Establishing within the gradient protects the bacterium from too high sulfide concentrations. G. ferruginea excretes extracellular polymeric substances (EPS). While in FeS-gradient cultures 2×106 cells/ml were obtained the bacterial mass could be increased to 1−3×108 cells/ml in shaken batch cultures using thiosulfate as substrate. A further increase of bacterial mass by adding an organic carbon source was not possible confirming that G. ferruginea is an obligate autotrophic organism. When growing on sulfide or thiosulfate the otherwise characteristic twisted stalk consisting of ferric hydroxide is lacking. It is thus shown to be a metabolic end product of Fe(II) oxidation rather than metabolically active cellular material.

Key words

Gallionella ferruginea Thiobacillus ferrooxidans Iron bacteria Chemolithoautotroph Thiosulfate oxidation Sulfide oxidation Sulfide gradient culture Microaerobe Stalk production Extracellular polymeric substances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balashova VV (1967) Structure of the “stalk” fibers in a laboratory culture of Gallionella filamenta. Microbiologiya (New York) 36:1050–1053Google Scholar
  2. Balashova VV (1968) Taxonomy of the genus Gallionella. Microbiologiya (New York) 37:590–598Google Scholar
  3. Balashova VV (1970) Ultrastructure of Gallionella filamenta. Microbiologiya (New York) 39:298–302Google Scholar
  4. Dorff P (1934) Die Eisenbakterien. Systematik und Morphologie. Pflanzenforschung 16:1–62Google Scholar
  5. Ehrenberg CG (1836) Vorläufige Mitteilung über das wirkliche Vorkommen fossiler Infusorien und ihre große Verbreitung. Poggendorfs Ann 38:213;455Google Scholar
  6. Gerb L (1953) “Reduzierte” Wässer. gwf Wasser-Abwasser 94:87–92; 157–160Google Scholar
  7. Hanert HH (1975) Entwicklung, Physiologie und Ökologie des Eisenbakteriums Gallionella ferruginea Ehrenberg. Beiträge zu einer Monographie; Habilitationsschrift, Faculty of Science, University of Braunschweig, FRGGoogle Scholar
  8. Hanert HH (1981) The genus Gallionella. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, a handbook on habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 509–515Google Scholar
  9. Hanert HH (1989) Gallionella. In: Staley JT (ed) Bergey's manual of systematic bacteriology, vol. 3. Williams & Wilkins, Baltimore Hongkong London Sydney, pp 1974–1979Google Scholar
  10. Heldal M, Tumyr O (1983) Gallionella from metalimnion in an eutrophic lake: morphology and X-ray energy dispersive micro-analysis of the apical cell and stalk. Can J Microbiol 29:303–308CrossRefGoogle Scholar
  11. Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Larkin JM, Strohl WR (1983) Beggiatoa, Thiothrix and Thioploca. Annu Rev Microbiol 37:341–367CrossRefGoogle Scholar
  13. Lu WP, Kelly DP (1988) Respiration-driven proton translocation in Thiobacillus versutus and the role of periplasmic thiosulfate-oxidizing enzyme system. Arch Microbiol 149:297–302CrossRefGoogle Scholar
  14. Lütters S, Hanert HH (1989) The ultrastructure of chemolithoautotrophic Gallionella ferruginea as revealed by chemical fixation and freeze-etching. Arch Microbiol 151:245–251CrossRefGoogle Scholar
  15. Nelson DC (1989) Physiology and biochemistry of filamentous sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin Heidelberg New York, pp 219–238Google Scholar
  16. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of the marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269CrossRefGoogle Scholar
  17. Nor YM, Tabatabai MA (1976) Extraction and colorimetric determination of thiosulfate and tetrathionate in soil. Soil Sci 122: 171–178CrossRefGoogle Scholar
  18. Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelver-bindungen in Mineralwässern. Thesis; Universität München, Faculty of ScienceGoogle Scholar
  19. Silver M, Lundgren DG (1968) Sulfur-oxidizing enzymes of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem 46:457–461CrossRefGoogle Scholar
  20. Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulfide ores. Z Allg Mikrobiol 12:311–346CrossRefGoogle Scholar
  21. Tuovinen OH, Kelly DP (1974) Studies on the growth of Thiobacillus ferrooxidans. Factors affecting growth in liquid cultures and development of colonies on solid media containing inorganic sulfur compounds. Arch Microbiol 98:351–364CrossRefGoogle Scholar
  22. Tuttle JH, Dugan PR (1976) Inhibition of growth, iron, sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. Can J Microbiol 22:719–731CrossRefGoogle Scholar
  23. vanIterson W (1958) Gallionella ferruginea Ehrenberg in a different light. Noord-Hallandische Uitgevers Maatschappis, AmsterdamGoogle Scholar
  24. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäuren durch neu isolierte Arten Sulfat-reduzierender Bakterien. Thesis; Universität Göttingen, Faculty of ScienceGoogle Scholar
  25. Zavarzin GA (1965) Chemoautotrophic microorganisms. Abstract of dissertation. Institute of Microbiology, Academy of Sciences of the UDSSR, MoscowGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Susanne Lütters-Czekalla
    • 1
  1. 1.Institut für Mikrobiologie der Technischen Universität BraunschweigBraunschweigGermany

Personalised recommendations