Advertisement

Journal of Automated Reasoning

, Volume 3, Issue 3, pp 247–283 | Cite as

Unification in Abelian semigroups

  • Alexander Herold
  • Jörg H. Siekmann
Article

Abstract

Unification in equational theories, i.e., solving of equations in varieties, is a basic operation in computational logic, in artificial intelligence (AI) and in many applications of computer science. In particular the unifiction of terms in the presence of an associative and commutative function, i.e., solving of equations in Abelian semigroups, turned out to be of practical relevance for term rewriting systems, automated theorem provers and many AI-programming languages. The observation that unification under associativity and commutativity reduces to the solution of certain linear diophantine equations is the basis for a complete and minimal unification algorithm. The set of most general unfiers is closely related to the notion of a basis for the linear solution space of these equations.

This result is extended to unification in free term algebras combined with Abelian semigroups.

Key words

Unification associativity commutativity Abelian monoids Abelian semigroups automated theorem proving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., ‘The Theory of Idempotent Semigroups is of Unification Type Zero’, Journal of Automated Reasoning, 2 (3), 283–286, (1986).Google Scholar
  2. 2.
    Büttner, W., ‘Unification in the Datastructure Multisets’, Journal of Automated Reasoning, 2 (1), 75–88, (1986).Google Scholar
  3. 3.
    Burris, S., and Sankappanavar, H. P., A Course in Universal Algebra, Springer-Verlag, (1981).Google Scholar
  4. 4.
    Clifford, A. H., and Preston, G. B., The Algebraic Theory of Semigroups, Volume 2, American Mathematical Society, (1967).Google Scholar
  5. 5.
    Dickson, L. E., ‘Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors’, Amer. J. Math. 34, 413–422, (1913).Google Scholar
  6. 6.
    Fages, F., ‘Formes canoniques dans les algèbres booléennes, et application à la démonstration automatique en logique de premier ordre’, Thèse de 3ème Cycle, Université Paris VI, (1983).Google Scholar
  7. 7.
    Fages, F., ‘Associative-Commutative Unification’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 194–208, (1984).Google Scholar
  8. 8.
    Fages, F., ‘Associative-Commutative Unification’, Technical Report, INRIA, BP 105, 78153 le Chesnay, (1985).Google Scholar
  9. 9.
    Fages, F. and Huet, G., ‘Unification and Matching in Equational Theories’, Journal of Theoretical Computer Science 43, 189–200, (1986).Google Scholar
  10. 10.
    Fortenbacher, A., ‘Algebraische Unifikation’, Diplomarbeit, Universität Karlsruhe, (1983).Google Scholar
  11. 11.
    Fortenbacher, A., ‘An Algebraic Approach to Unification under Associativity and Commutativity’, Proc. of Rewriting Techniques and Applications (ed. Jouannaud, J.-P.), Springer-Verlag, LNCS 202, 381–397, (1985).Google Scholar
  12. 12.
    Gordan, P., ‘Uber die Auflösung linearer Gleichungen mit reellen Coefficienten’, Mathematische Annalen, 23–28, (1873).Google Scholar
  13. 13.
    Guckenbiehl, T., and Herold, A., ‘Solving Linear Diophantine Equations’, MEMO SEKI-III-KL, Universität Kaiserslautern, (1985).Google Scholar
  14. 14.
    Grätzer, G., Universal Algebra, Springer-Verlag, (1979).Google Scholar
  15. 15.
    Goguen, J. A., Thatcher, J.W. and Wagner, E. G., ‘An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types’, in Current Trends in Programming Methodology, Vol. 4, Data Structuring (ed. Yeh, R. T.), Prentice Hall, (1978).Google Scholar
  16. 16.
    Huet, G. and Oppen, D. C., ‘Equations and Rewrite Rules: A Survey, in Formal languages: Perspectives and Open Problems (ed. Book, R.), Academic Press, (1980).Google Scholar
  17. 17.
    Hullot, J. M., ‘Compilation de formes canoniques dans des théories équationelles’, Thèse de 3éme Cycle, Université de Paris-Sud, (1980).Google Scholar
  18. 18.
    Huet, G., ‘Réolution d'équations dans des langages d'ordre 1, 2, ..., ω’, Thèse de doctorat d'état, Université paris VIII, (1976).Google Scholar
  19. 19.
    Huet, G., ‘An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations’, Information Processing letters, 7 (3), 144–147, (1978).Google Scholar
  20. 20.
    Hewitt, C., ‘Description and Theoretical Analysis of PLANNER, a Language for proving Theorems and Manipulating Models in a Robot’, Ph. D. thesis, Dept. of Mathematics, MIT, (1972).Google Scholar
  21. 21.
    Kirchner, C., ‘Methodes et outils de conception systematique d'algorithmes d'unification dans les théories équationelles’, Thèse de doctorat d'état, Université de Nancy 1, (1985).Google Scholar
  22. 22.
    Knuth, D., and Bendix, P., ‘Simple Word Problems in Universal Algebras’, Proc. of Computational Problems in Abstract Algebra (ed leech, J.), Pergamon Press, 263–297, (1970).Google Scholar
  23. 23.
    D. Lankford, ‘A New Non-negative Integer Basis Algorithm for Linear Homogeneous Equations with Integer Coefficients’, unpublished, (1985).Google Scholar
  24. 24.
    Livesey, M. and Siekmann, J., ‘Unification of AC-Terms (bags) and ACI-Terms (sets)’, Internal Report, University of Essex (1975) and Technical Report 3-76, Universität Karlsruhe, (1976).Google Scholar
  25. 25.
    Livesey, M. and Siekmann, J., ‘Unification of Sets and Multisets’, SEKI-Technical Report, Universität karlsruhe, (1978).Google Scholar
  26. 26.
    Plotkin, G. D., ‘Building-in Equational Theories’, Machine Intelligence 7 (eds. Meltzer, B. and Michie, D.), 73–90, (1972).Google Scholar
  27. 27.
    Peterson, M. S., and Stickel, M. E., ‘Complete Sets of Reductions for Equational Theories with Complete Unification Algorithms’, JACM 28 (2), 322–264, (1984).Google Scholar
  28. 28.
    Rulifson, J. F., Derkson, J. A., and Waldinger, R. J., ‘QA4: A procedural Calculus for Intuitive Reasoning’, Tecn. Report, Stanford Research Institute, AI-Research Centre, TR-73, (1972).Google Scholar
  29. 29.
    Robinson, J. A., ‘A Machine-Oriented Logic Based on the Resolution Principle’, JACM 12 (1), 23–41. (1965).Google Scholar
  30. 30.
    Schmidt-Schauß, M., ‘Unification under Associativity and Idempotence is of Type Nullary’, Journal of Automated Reasoning 2 (3), 277–282, (1986).Google Scholar
  31. 31.
    Siekmann, J., ‘Universal Unification’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 1–42, (1984).Google Scholar
  32. 32.
    Siekmann, J., ‘Unification Theory’, to appear in Journal of Symbolic Computation. (1987).Google Scholar
  33. 33.
    Stickel, M. E., ‘A Complete Unification Algorithm for Associative-Commutative Functions’, Proc. of 4th IJCAI, Tblisi, USSR, 71–82, (1975).Google Scholar
  34. 34.
    Stickel, M. E., ‘Unification Algorithms for Artificial Intelligence’, Ph. D. thesis, Carnegie-Mellon University, (1976).Google Scholar
  35. 35.
    Stickel, M. E., ‘A Unification Algorithm for Associative-Commutative Functions’, JACM 28 (3), 423–434, (1981).Google Scholar
  36. 36.
    Stickel, M. E., ‘A Case Study of Theorem Proving by the Knuth-Bendix Method Discovering that X 3=X Implies Ring Commutativity’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 248–258, (1984).Google Scholar
  37. 37.
    Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning — Introduction and Applications, Prentice-Hall, (1984).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Alexander Herold
    • 1
  • Jörg H. Siekmann
    • 2
  1. 1.European Computer-Industry Research Centre (ECRC)Münich 81West Germany
  2. 2.Fachbereich InformatikUniversität KaiserslauternKaiserslauternWest Germany

Personalised recommendations