Skip to main content
Log in

Characterization of the amino acids of bovine fibrinogen involved in the fibrinogen-thrombin interaction of the blood clotting process. Comparison with the milk clotting process

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Bovine fibrinogen and the Aα and Bβ chains of bovine fibrinogen have been subjected to chemical modification by a number of reagents and the effects of these procedures on the susceptibility of the proteins to thrombin hydrolysis is described. The reagents used were rose bengal (for photo-oxidation), 2-hydroxy-5-nitrobenzyl bromide, N-acetylimidazole, iodoacetic acid and diethyl pyrocarbonate. Evidence is presented which indicates that the tryptophan and tyrosine residues of fibrinogen are not involved to any great extent in the interaction of this protein with thrombin. Modification with iodoacetic acid suggests that methionine residues play a major role in such interactions, but the fibrinogen chains on which the important residues reside remain uncertain. The use of diethyl pyrocarbonate indicates the participation also of histidine in fibrinogen-thrombin interactions and that, whereas the histidine residues of the Bβ chain are involved to a great extent, it appears that those of the Aa chain are not. The similarities which exist between the fibrinogen-thrombin and the κ-casein-chymosin systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEP:

diethyl pyrocarbonate (ethoxyformic anhydride)

HNBB:

2-hydroxy-5-nitrobenzyl bromide

N-Acl:

N-acetylimidazole

PTC:

phenylthiocarbamyl

PTH:

3-phenyl-2-thiohydantoin.

References

  1. Blomback, B. and Yamashina, I., 1958. Ark. Kemi 12, 299–308.

    Google Scholar 

  2. Caspary, E. A. and Kekwick, R. A., 1957. Biochem. J. 67, 41–48.

    Google Scholar 

  3. Lorand, L. and Middlebrook, W. R., 1952. Biochim. Biophys. Acta 9, 581–582.

    Google Scholar 

  4. Bettelheim, F. R., 1956. Biochim. Biophys. Acta 19, 121–130.

    Google Scholar 

  5. Bettelheim, F. R. and Bailey, K., 1952. Biochim. Biophys. Acta 9, 578–579.

    Google Scholar 

  6. Scheraga, H. A. and Laskowski, M. (Jr.), 1957. Adv. Prot. Chem. 12, 1–131.

    Google Scholar 

  7. Liem, R. K. H., Andreatta, R. H. and Scheraga, H. A., 1971. Arch. Biochem. Biophys. 147, 201–213.

    Google Scholar 

  8. Liem, R. K. H. and Scheraga, H. A., 1973. Arch. Biochem. Biophys. 158, 387–395.

    Google Scholar 

  9. Liem, R. K. H. and Scheraga, H. A., 1974. Arch. Biochem. Biophys. 160, 333–339.

    Google Scholar 

  10. Hageman, T. C. and Scheraga, H. A., 1974. Arch. Biochem. Biophys. 164, 707–715.

    Google Scholar 

  11. Hageman, T. C. and Scheraga, H. A., 1977. Arch. Biochem. Biophys. 179, 506–517.

    Google Scholar 

  12. Jollès, P., 1975. Mol. Cell. Biochem. 7, 73–85.

    Google Scholar 

  13. Schattenkerk, C., Holtkamp, I., Hessing, J. G. M., Kerling, K. E. T. and Havinga, E., 1971. Rec. Trav. Chim. 90, 1320–1322.

    Google Scholar 

  14. Schattenkerk, C. and Kerling, K. E. T., 1973. Neth. Milk. Dairy J. 27, 286–287.

    Google Scholar 

  15. Raymond, M. N., Garnier, J. and Bricas, E., 1972. Biochimie 54, 145–154.

    Google Scholar 

  16. Polzhofer, K. R., 1972. Tetrahedron 28, 855–865.

    Google Scholar 

  17. Jollès, J., Fiat, A.-M., Schoentgen, F., Alais, C. and Jolles, P., 1974. Biochim. Biophys. Acta 365, 335–343.

    Google Scholar 

  18. Jollès, P., Loucheux-Lefebvre, M.-H. and Henschen, A., 1978. J. Mol. Evol. In press.

  19. Inada, Y., Hessel, B. and Blomback, B., 1978. Biochim. Biophys. Acta 532, 161–180.

    Google Scholar 

  20. Kaye, N. M. C. and Jolles, P. 1978. Unpublished results.

  21. Gollwitzer, R., Timpl, R., Becker, U. and Furthmayr, H., 1972. Eur. J. Biochem. 28, 497–506.

    Google Scholar 

  22. Kaye, N. M. C. and Weitzmann, P. D. J., 1976. FEBS Lett. 62, 334–337.

    Google Scholar 

  23. Spies, J. R. and Chambers, D. C., 1949. Anal. Chem. 21, 1249–1266.

    Google Scholar 

  24. Weil, L. and Maher, J., 1950. Fed. Proc. Fed. Amer. Soc. Exp. Biol. 9, 244.

    Google Scholar 

  25. Weil, L., Gordon, W. G. and Buchert, A. R., 1951. Arch. Biochem. Biophys. 33, 90–109.

    Google Scholar 

  26. Yamasaki, M., Tanase, S. and Morino, Y., 1975. Biochem. Biophys. Res. Commun. 65, 652–657.

    Google Scholar 

  27. Coulson, A. F. W. and Yonetani, T., 1972. Eur. J. Biochem. 26, 125–131.

    Google Scholar 

  28. Koshland, D. E., Karkhanis, Y. D. and Latham, H. G., 1964. J. Amer. Chem. Soc. 86, 1448–1450.

    Google Scholar 

  29. Henschen, A., 1964. Arkiv Kemi 22, 375–380.

    Google Scholar 

  30. Means, G. E. and Feeney, R. A., 1971. in “Chemical Modification of Proteins” pp. 164–165, Holden-Day, Inc., San Francisco.

    Google Scholar 

  31. Ovàdi, J., Libor, S. and Elödi, P., 1967. Acta Biochim. Biophys. Acad. Sci. Hung. 2, 455–458.

    Google Scholar 

  32. Muhlrad, A., Hegyi, G. and Horanyi, M., 1969. Biochim. Biophys. Acta 181, 184–190.

    Google Scholar 

  33. Mühlrad, A., Hegyi, G. and Toth, G., 1967. Acta Biochim. Biophys. Acad. Sci. Hung. 2, 19–29.

    Google Scholar 

  34. Melchior, W. B. and Fahrney, D., 1970. Biochemistry 9, 251–257.

    Google Scholar 

  35. Elödt, P., 1968. in “Biochemical Evolution and Homologous Enzymes” (Thoai, N.V. and Roche, J., eds.), pp. 105–108, Gordon and Breach, New York.

  36. Loosemore, M. J. and Pratt, R. F., 1976. FEBS Lett. 72, 155–158.

    Google Scholar 

  37. Hill, R. D., 1968. Biochem. Biophys. Res. Commun. 33, 659–663.

    Google Scholar 

  38. Plow, E. F., 1977. Eur. J. Biochem. 80, 55–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, N.M.C., Jollès, P. Characterization of the amino acids of bovine fibrinogen involved in the fibrinogen-thrombin interaction of the blood clotting process. Comparison with the milk clotting process. Mol Cell Biochem 20, 173–182 (1978). https://doi.org/10.1007/BF00243764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243764

Keywords

Navigation