Skip to main content
Log in

Cylindrical three-dimensional electrodes under limiting current conditions

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three-dimensional electrodes of cylindrical geometry, with current and electrolyte flows at a right angle, can be realized with an inner or outer position of the counter electrode. Furthermore, in the case of the fluidized bed the performance of the electrode is also influenced by the position of the current feeder. For the packed bed and the fluidized bed the limiting current analysis has been applied to calculate the variation of overpotential within the bed in relation to the penetration depth of the diffusion limited current density. Results obtained for both cylindrical geometries are compared with those of a rectangular electrode. In the case of a packed bed electrode the largest penetration depth of the limiting current density is offered by the cylindrical design with the counter electrode in an outer position. For fluidized bed electrodes the situation is more complex, depending on the ratio of the solution phase to the particulate phase resistance which is a function of the resistivity and the geometric parameters. However, the configuration with an outer counter electrode is generally more advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischmann and J. W. Oldfield, J. Electroanal. Chem. Interfacial Electrochem. 29 (1971) 211.

    Google Scholar 

  2. J. R. Backhurst, J. M. Coulson, F. Goodridge, R. E. Plimley and M. Fleischmann, J. Electrochem. Soc. 116 (1969) 1600.

    Google Scholar 

  3. F. Goodridge, D. I. Holden, H. D. Murray and R. F. Plimley, Trans. Instn, Chem. Engrs 41 (1971) 128.

    Google Scholar 

  4. S. Germain and F. Goodridge, Electrochim. Acta 21 (1976) 545.

    Google Scholar 

  5. F. Goodridge and C. J. Vance, 24 (1979) 1237.

    Google Scholar 

  6. B. J. Sabacky and J. W. Evans, J. Electrochem. Soc. 126 (1979) 1180.

    Google Scholar 

  7. W. G. Sherwood, P. B. Queneau, C. Nikolic and D. R. Hodges, Metall. Trans. B 10 (1979) 659.

    Google Scholar 

  8. S. Morooka, K. Kusakabe and Y. Kato, Int. Chem. Eng. 20 (1980) 433.

    Google Scholar 

  9. A. T. S. Walker and A. A. Wragg, Electrochim. Acta 25 (1980) 323.

    Google Scholar 

  10. F. Goodridge, K. Lister and K. Scott, J. Appl. Electrochem. 11 (1981) 723.

    Google Scholar 

  11. I. F. Masterson and J. W. Evans, Metall. Trans. B 13 (1982) 3.

    Google Scholar 

  12. G. Kreysa and G. Linzbach, DECHEMA Monographs 93 (1982) 177.

    Google Scholar 

  13. V. Jiricny and J. W. Evans, Metall. Trans. B 15 (1984) 623.

    Google Scholar 

  14. G. Kreysa, DECHEMA Monographs 94 (1983) 123.

    Google Scholar 

  15. Idem, ‘Habilitationsschrift’, Universität Dortmund, July (1978).

  16. G. Kreysa, in ‘Ullmann's Encyclopedia of Industrial Chemistry’, A9 (1987) 204.

    Google Scholar 

  17. F. Coeuret, J. Appl. Electrochem. 10 (1980) 687.

    Google Scholar 

  18. B. J. Sabacky and J. W. Evans, J. Electrochem. Soc. 126 (1979) 1176.

    Google Scholar 

  19. G. van der Heiden, C. M. S. Raats and H. F. Boon, Chem. Ind. 1 (1978) 465.

    Google Scholar 

  20. , Chem.-Ing.-Tech. 51 (1979) 651.

    Google Scholar 

  21. L. L. Bott, Hydrocarbon Proc. 44 (1965) 115.

    Google Scholar 

  22. M. Fleischmann and J. W. Oldfield, J. Electroanal. Chem. Interfacial Electrochem. 29 (1971) 231.

    Google Scholar 

  23. A. A. C. M. Beenackers, W. P. M. van Swaaij and A. Welmers, Electrochim. Acta 22 (1977) 1277.

    Google Scholar 

  24. G. Kreysa, 25 (1980) 813.

    Google Scholar 

  25. B. J. Sabacky and J. W. Evans, Metall. Trans. B 8 (1977) 5.

    Google Scholar 

  26. R. E. Plimley and A. R. Wright, Chem. Eng. Sci. 39 (1984) 395.

    Google Scholar 

  27. G. Kreysa and C. Reynvaan, J. Appl. Electrochem. 12 (1982) 241.

    Google Scholar 

  28. J. M. Bisang and G. Kreysa, 18 (1988) 422.

    Google Scholar 

  29. K. Kusakabe, S. Morooka and Y. Kato, J. Chem. Eng. Jpn. 14 (1981) 208.

    Google Scholar 

  30. G. Kreysa, J. Appl. Electrochem. 15 (1985) 175.

    Google Scholar 

  31. T. Z. Fahidy, in ‘Principles of Electrochemical Reactor Analysis’, Elsevier, Amsterdam (1985) Ch. 11, p. 278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreysa, G., Jüttner, K. & Bisang, J.M. Cylindrical three-dimensional electrodes under limiting current conditions. J Appl Electrochem 23, 707–714 (1993). https://doi.org/10.1007/BF00243340

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243340

Keywords

Navigation