Skip to main content
Log in

Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A protocol for distance geometry calculation is shown to have excellent sampling properties in the determination of three-dimensional structures of proteins from nuclear magnetic resonance (NMR) data. This protocol uses a simulated annealing optimization employing mass-weighted molecular dynamics in four-dimensional space (Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78). It attains an extremely large radius of convergence, allowing a random coil conformation to be used as the initial estimate for the succeeding optimization process. Computations are performed with four systems of simulated distance data as tests of the protocol, using an unconstrained l-alanine 30mer and three different types of proteins, bovine pancreatic trypsin inhibitor, the α-amylase inhibitor Tendamistat, and the N-terminal domain of the 434-repressor. The test of the unconstrained polypeptide confirms that the sampled conformational space is that of the statistical random coil. In the larger and more complicated systems of the three proteins, the protocol gives complete convergence of the optimization without any trace of initial structure dependence. As a result of an exhaustive conformational sampling by the protocol, the intrinsic nature of the structures generated with distance restraints derived from NMR data has been revealed. When the sampled structures are compared with the corresponding X-ray structures, we find that the averages of the sampled structures always show a certain pattern of discrepancy from the X-ray structure. This discrepancy is due to the short distance nature of the distance restraints, and correlates with the characteristic shape of the protein molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

r.m.s.d.:

root-mean-square deviation

MD:

molecular dynamics

NMR:

nuclear magnetic resonance

NOE:

nuclear Overhauser enhancement

BPTI:

bovine pancreatic trypsin inhibitor

References

  • Aho, A., Hopcroft, J. and Ullman, J. (1983) Data Structures and Algorithms, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Berendsen, H.J.C., Postma, J.P.M., vanGunsteren, W.F., DiNola, A. and Haak, J.R. (1984) J. Chem. Phys., 81, 3684–3690.

    Google Scholar 

  • Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977) J. Mol. Biol., 112, 535–542.

    Google Scholar 

  • Braun, W. (1987) Q. Rev. Biphys., 19, 115–157.

    Google Scholar 

  • Braun, W. and Gō, N. (1985) J. Mol. Biol., 186, 611–626.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1989) CRC Crit. Rev. Biochem. Mol. Biol., 24, 479–564.

    Google Scholar 

  • Clore, G.M. and Gronenborn, A.M. (1991) Science, 252, 1390–1399.

    Google Scholar 

  • Crippen, G.M. (1981) Distance Geometry and Conformational Calculations, Research Studies Press, John Wiley, New York, NY.

    Google Scholar 

  • Crippen, G.M. (1982) J. Comp. Chem., 3, 471–476.

    Google Scholar 

  • Crippen, G.M. and Havel, T.F. (1978) Acta Crystallogr., A34, 282–284.

    Google Scholar 

  • Crippen, G.M. and Havel, T.F. (1988) Distance Geometry and Molecular Conformation, Research Studies Press, Taunton, Somerset, U.K.

    Google Scholar 

  • Dress, A.W.M. and Havel, T.F. (1984) Discrete Appl. Math., 19, 129–144.

    Google Scholar 

  • Havel, T.F. (1990) Biopolymers, 29, 1565–1585.

    Google Scholar 

  • Havel, T.F. (1991) Prog. Biophys. Mol. Biol., 56, 43–78.

    Google Scholar 

  • Havel, T.F. and Wüthrich, K. (1984) Bull. Math. Biol., 46, 673–698.

    Google Scholar 

  • Havel, T.F. and Wüthrich, K. (1985) J. Mol. Biol., 182, 281–294.

    Google Scholar 

  • Havel, T.F., Kuntz, I.D. and Crippen, G.M. (1983) Bull. Math. Biol., 45, 665–720.

    Google Scholar 

  • Kaptein, R., Boelens, R., Scheek, R.M. and vanGunsteren, W.F. (1988) Biochemistry, 27, 5389–5395.

    Google Scholar 

  • Kuntz, I.D., Thomason, J.T. and Oshiro, C.M. (1989) J. Biomol. NMR, 2, 33–56.

    Google Scholar 

  • Kuszewski, J., Nilges, M. and Brünger, A.T. (1989) Methods Enzymol. B, 177, 159–203.

    Google Scholar 

  • Liu, Y., Zhao, D., Altman, R. and Jardetzky, O. (1992) J. Biomol. NMR, 2, 373–388.

    Google Scholar 

  • Metzler, W.J., Hare, D.R. and Pardi, A. (1989) Biochemistry, 28, 7045–7052.

    Google Scholar 

  • Mondragon, A., Subbiah, S., Almo, S.C., Drottar, M. and Harrison, S.C. (1989) J. Mol. Biol., 205, 189–200.

    Google Scholar 

  • Morikami, K., Nakai, T., Kidera, A., Saito, S. and Nakamura, H. (1992) Comput. Chem., 16, 243–248.

    Google Scholar 

  • Nakai, T., Yoshikawa, W., Nakamura, H. and Yoshida, H. (1992) Eur. J. Biochem., 208, 41–51.

    Google Scholar 

  • Nilges, M., Clore, G.M. and Grenenborn, A.M. (1988) FEBS Lett., 229, 317–324.

    Google Scholar 

  • Ogata, K., Hojo, H., Aimoto, S., Nakai, T., Nakamura, H., Sarai, A., Ishii, S. and Nishimura, Y. (1992) Proc. Natl. Acad. Sci. USA, 89, 6428–6432.

    Google Scholar 

  • Oshiro, C.M., Thomason, J.T. and Kuntz, I.D. (1991) Biopolymers, 31, 1049–1064.

    Google Scholar 

  • Pflugrath, J.W., Wiegand, G. and Huber, R. (1986) J. Mol. Biol., 189, 383–386.

    Google Scholar 

  • Purisima, E.O. and Scheraga, H.A. (1987) J. Mol. Biol., 196, 697–709.

    Google Scholar 

  • Wagner, G., Braun, W., Havel, T.F., Shaumann, T., Gō, N. and Wüthrich, K. (1987) J. Mol. Biol., 196, 611–639.

    Google Scholar 

  • Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.A. (1986) J. Comp. Chem., 7, 230–252.

    Google Scholar 

  • Wlodawer, A., Walter, J., Huber, R. and Sjolin, L. (1984) J. Mol. Biol., 180, 301–331.

    Google Scholar 

  • Wüthrich, W., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakai, T., Kidera, A. & Nakamura, H. Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties. J Biomol NMR 3, 19–40 (1993). https://doi.org/10.1007/BF00242473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242473

Keywords

Navigation