Skip to main content
Log in

Characterization of aqueous rubidium chloride as an equitransferent ultraconcentrated salt bridge

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

From e.m.f. measurements on the concentration cells Ag|AgCl|RbCl (m)∥RbCl (m f)|AgCl|Ag and Rb-amalgam|RbCl (m f)∥RbCl (m)Rb-amalgam, the ion and solvent transference numbers have been determined for aqueous RbCl solutions at molalities up to 7 mol kg−1 over the temperature range from 25 to 55°C. From the ionic transference numbers found, aqueous RbCl emerges as the most closely equitransferent salt bridge ever characterized. Considering also its high solubility (7.8 mol kg−1 at 25°C), RbCl is recommended as a built-in salt bridge for reference electrodes, in view of replacing the insufficiently equitransferent KCl bridges so far adopted by manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. A. Guggenheim, J. Phys. Chem. 36 (1930) 1752; J. Am. Chem. Soc. 52 (1930) 1315.

    Google Scholar 

  2. A. K. Covington, in ‘Ion Selective Electrodes’, NBS Special Publication 314 (edited by R. A. Durst) Washington DC (1969), p. 107, and literature cited therein.

  3. R. G. Bates, ‘Determination of pH — Theory and Practice’, 2nd edn, Wiley, New York (1973), pp. 311–27.

    Google Scholar 

  4. R. G. Bates, op. cit. [3]‘, pp. 54, 324.

    Google Scholar 

  5. K. Cammann, ‘Working with Ion-Selective Electrodes,’ Springer, Berlin (1979), pp. 35–42.

    Google Scholar 

  6. D. J. G. Ives and G. J. Janz, ‘Reference Electrodes — Theory and Practice’, Academic Press, New York (1961), pp. 505.

    Google Scholar 

  7. T. Mussini, J. Chem. Educ. 65 (1988) 242.

    Google Scholar 

  8. P. Longhi, F. D'Andrea, P. R. Mussini, T. Mussini and S. Rondinini, Anal. Chem. 62 (1990) 1019.

    Google Scholar 

  9. P. R. Mussini, F. D'Andrea, A. Galli, P. Longhi and S. Rondinini. J. Appl. Electrochem. 20 (1990) 651.

    Google Scholar 

  10. P. R. Mussini, S. Rondinini, A. Cipolli, R. Manenti and M. Mauretti, Ber. Bunseges. Phys. Chem. 97 (1993) 1034.

    Google Scholar 

  11. R. A. Robinson and R. H. Stokes, ‘Electrolyte Solutions,’ 2nd edn., Butterworths, London (1965), pp. 463–65.

    Google Scholar 

  12. W. J. Hamer and Yung-Chi Wu, J. Phys. Chem. Ref. Data 1 (1972) 1047.

    Google Scholar 

  13. P. Longhi, T. Mussini and C. Osimani,. J. Chem. Thermodyn. 6 (1974) 227.

    Google Scholar 

  14. P. R. Mussini, P. Longhi, T. Mussini and S. Rondinini, J. Appl. Electrochem. 20 (1990) 645.

    Google Scholar 

  15. R. H. Stokes, J. Amer. Chem. Soc. 76 (1954) 1988.

    Google Scholar 

  16. R. A. Robinson and R. H. Stokes, op. cit. [11], pp. 155–57.

    Google Scholar 

  17. T. Mussini and A. Pagella, J. Chem. Eng. Data 16 (1971) 49.

    Google Scholar 

  18. D. J. G. Ives and G. J. Janz, op. cit. [6], pp. 203–7.

    Google Scholar 

  19. W. F. Linke and A. Seidell, ‘Solubilities — Inorganic and Metal-Organic Compounds’, vol. 1, American Chemical Society, Washington DC (1958), pp. 60, 66–70.

    Google Scholar 

  20. K. R. Patil, A. D. Tripathi, G. Pathak and S. S. Katti, J. Chem. Eng. Data 36 (1991) 225.

    Google Scholar 

  21. R. A. Robinson and R. H. Stokes, op. cit. [11], p. 34.

    Google Scholar 

  22. T. Mussini, C. Massarani-Formaro and P. Andrigo, J. Electroanal. Chem. 33 (1971) 189;

    Google Scholar 

  23. T. Mussini, P. Longhi and P. Giammario, Chim. Ind. (Milan) 54 (1972) 3, 1093;

    Google Scholar 

  24. R. Cavaliere, P. Longhi, T. Mussini and S. Neglia, Gazz. Chim. Ital. 109 (1979) 495.

    Google Scholar 

  25. SAS ‘User's Guide: Statistics’, Version 5, SAS Institute, Inc., Cary, N. C. (1985) pp. 575, 655.

    Google Scholar 

  26. R. A. Robinson and R. H. Stokes, op. cit. [1l], pp. 458, 468.

    Google Scholar 

  27. Idem, op. cit. [1l], p. 554.

    Google Scholar 

  28. H. R. Stokes, J. Phys. Chem. 65 (1961) 1242.

    Google Scholar 

  29. B. M. Cook and H. R. Stokes, J. Phys. Chem. 67 (1963) 511.

    Google Scholar 

  30. R. G. Bates, op. cit. [3]‘, pp. 36–37.

    Google Scholar 

  31. A. K. Covington, R. G. Bates and R. A. Durst, Pure Appl. Chem. 57 (1985) 531.

    Google Scholar 

  32. E. A. Guggenheim, J. Amer. Chem. Soc. 52 (1930) 1315; J. Phys. Chem. 36 (1930) 1758.

    Google Scholar 

  33. A. K. Covington, in ‘Ion-Selective Electrodes’, NBS Special Publication 314, Washington DC (1969) pp. 127–29.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buizza, C., Mussini, P.R., Mussini, T. et al. Characterization of aqueous rubidium chloride as an equitransferent ultraconcentrated salt bridge. J Appl Electrochem 26, 337–341 (1996). https://doi.org/10.1007/BF00242104

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242104

Keywords

Navigation