Skip to main content
Log in

Review of the CIV phenomenon

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Alfvén's Critical Ionization Velocity (CIV) phenomenon is reviewed, with the main emphasis on comparisons between experimental and theoretical results. The review covers (1) the velocity measurements in laboratory experiments, (2) the effect of wall interaction, (3) the experimental and theoretical limits to the magnetic field strength and the neutral density, (4) ionospheric release experiments, (5) theoretical models for electron energization in comparison to experimental results, and (6) CIV models. All laboratory investigations of the CIV are found to obey the three following simple rules of thumb: (1) if the magnetic field is so strong that V A > 3V 0, and if there is enough neutral gas that the Townsend condition is fulfilled, then the CIV effect occurs, (2) when it occurs, the threshold velocity (or E/B value) is within ± 50% of Alfvén's proposed value V c , and (3) for weaker magnetic fields, the effect gradually becomes irreproducible or weak and disappears altogether for V A < V 0. The theoretical understanding of the process has grown rapidly during the last decade, mainly due to the introduction of computer simulation models which have to a large degree confirmed and extended earlier analytical theories. The CIV mechanism is not due to one single plasma process, but to several different mechanisms which are applicable in different parameter regimes and geometries. The computer simulations have shown that in order to understand the mechanism properly it is necessary to consider a large number of interlocking collisional and plasma processes. The theoretical development has reached the stage where it should be possible to adapt computer simulation models to specific experiments and predict ionization rates, plasma flow velocities, E/B values, particle distributions, and wave spectra. Such models should for the first time provide a really firm basis for extrapolations of the CIV process to space applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdrashitov, G. F., Beloborodov, A. V., Volosov, V. I., Kubarev, V. V., Popov, Yu. S., and Yudin, Yu. S.: 1989, ‘Hot Rotating Plasma (PSP-2 Experiment)’, Preprint 89–109, Inst. of Nuclear Physics, Novosibirsk.

    Google Scholar 

  • Abe, T.: 1984, ‘Theory for the Critical Ionization Velocity Phenomenon’, Planetary Space Sci. 32, 903–906.

    Google Scholar 

  • Abe, T. and Machida, S.: 1985, ‘Production of High-Energy Electrons Caused by Counter Streaming Ion Beams in an External Magnetic Field’, Phys. Fluids 28, 1178.

    Google Scholar 

  • Alfvén, H.: 1942, On the Cosmogony of the Solar System, Stockholms Observatoriums Annaler, p. 14.

  • Alfvén, H.: 1954, On the Origin of the Solar System, Clarendon Press, Oxford.

    Google Scholar 

  • Alfvén, H.: 1960, ‘Collision between a Non-Ionized Gas and a Magnetized Plasma’, Rev. Mod. Phys. 32, 710–713.

    Google Scholar 

  • Alfvén, H. and Fälthammar, C.-G.: 1963, Cosmical Electrodynamics, Clarendon Press, Oxford, pp. 185–188.

    Google Scholar 

  • Angerth, B., Block, L., Fahleson, U., and Soop, K.: 1962, ‘Experiments with Partly Ionized Rotating Plasmas’, Nuclear Fusion Suppl. Part 1, 39–46.

  • Arnoldy, R. L., Pollock, C. J., Cahill, J. L., Jr., Erlandson, R. E., and Kintner, P. M.: 1990, ‘Observations of the Plasma Environment During an Active Ionospheric Ion Beam Injection Experiment’, Adv. Space Res. 10, No. 7, 107–112.

    Google Scholar 

  • Axnäs, I.: 1972, Experimental Investigations of an Ionizing Wave in a Coaxial Plasma Gun, Royal Institute of Technology, Stockholm, TRITA-EPP-72–31.

    Google Scholar 

  • Axnäs, I.: 1978a, ‘Velocity Limitations in Coaxial Plasma Gun Experiments with Gas Mixtures’, Astrophys. Space Sci. 55, 139–146.

    Google Scholar 

  • Axnäs, I.: 1978b, Experimental Comparison of the Critical Ionization Velocity in Atomic and Molecular Gases, Royal Institute of Technology, Stockholm, TRITA-EPP-78–04.

    Google Scholar 

  • Axnäs, L.: 1980, ‘Some Necessary Parameters for a Critical Velocity Interaction beween the Ionospheric Plasma and a Xenon Cloud’, Geophys. Res. Letters 1, 933–936.

    Google Scholar 

  • Axnäs, I.: 1981, The Radial Variation of the Ionization in a Coaxial Plasma Gun Operated under Critical Velocity Conditions, Royal Institute of Technology, Stockholm, TRITA-EPP-81–07.

    Google Scholar 

  • Axnäs, I.: 1988, Anomalous Cross-Field Velocities in a CIV Laboratory Experiment, Royal Institute of Technology, Stockholm, TRITA-EPP-88–06.

    Google Scholar 

  • Axnäs, I.: 1990, ‘Anomalous Cross-Field Currents in a CIV Laboratory Experiment’, Adv. Space Res. 10, No. 7, 17–22.

    Google Scholar 

  • Axnäs, I. and Brenning, N.: 1991, ‘CIV Interaction: Laboratory Experiments on the Magnetic and Neutral Density Limits’, Plasma Phys. Contr. Fus. 33, 1–27.

    Google Scholar 

  • Axnäs, I. and Raadu, M. A.: 1983, Rapid Energization of Electrons in a Critical Velocity Discharge Experiment, Proc. XVI Int. Conf. on Phen in Ionized Gases, Düsseldorf, August 29–September 2, 1983, p. 708.

  • Axnäs, I., Brenning, N., and Raadu, M. A.: 1982, The Critical Ionization Velocity — a Bibliography, Royal Institute of Technology, Stockholm, TRITA-EPP-82–13.

    Google Scholar 

  • Bergström, J. and Hellsten, T.: 1976, Nucl. Instr. Methods 133, 347.

    Google Scholar 

  • Bergström, J., Holmberg, S., and Lehnert, B.: 1966, Plasma Physics and Controlled Nuclear Fusion Research, IAEA, Vienna, Vol. 1, p. 341.

    Google Scholar 

  • Borovsky, J. E.: 1987, ‘Limits on the Cross-Field Propagation of Streams of Cold Plasma’, Phys. Fluids 30(8), 2518–2526.

    Google Scholar 

  • Borovsky, J. E. and Hansen, P. J.: 1987, ‘The Dynamics and Internal Convection of E-Cross-B-Drifting Clouds: Dielectric-in Cell Simulations’, Preprint LA-UR-87-1966, Los Alamos National Laboratory.

  • Brenning, N.: 1981, ‘Experiments on the Critical Ionization Velocity Interaction in Weak Magnetic Fields’, Plasma Phys. 23, 967–977.

    Google Scholar 

  • Brenning, N.: 1982a, Review of Impact Experiments on the Critical Ionization Velocity, Royal Institute of Technology, Stockholm, TRITA-EPP-82–14.

    Google Scholar 

  • Brenning, N.: 1982b, A Necessary Condition for the Critical Ionization Velocity Interaction, Royal Institute of Technology, Stockholm, TRITA-EPP-82–14.

    Google Scholar 

  • Brenning, N.: 1982c, Comment on the Townsend Condition, Proc. of Workshop on Alfvén's Critical Velocity Effect, Report, Max-Planck-Inst. für Extraterr. Phys., p. 178, Garching, Germany, pp. 313–320.

  • Brenning, N.: 1982d, in H. Wilhelmson and J. Weiland (eds.), A Criterion for the Possibility of Critical Ionization Velocity Ionization, Proc. 1982 International Conf. on Plasma Physics, Chalmers University of Technology, p. 430.

  • Brenning, N.: 1985, ‘Limits on the Magnetic Field for CIV Interaction’, Phys. Fluids 28, 3424–3426.

    Google Scholar 

  • Brenning, N.: 1989, On the Spoke Structure in Critical Velocity Rotating Plasmas, Royal Institute of Technology, Stockholm, TRITA-EPP-89–01.

    Google Scholar 

  • Brenning, N. and Axnäs, I.: 1988, ‘Critical Ionization Velocity Interaction: Some Unsolved Problems’, Astrophys. Space Sci. 144, 15–30.

    Google Scholar 

  • Brenning, N., Fälthammar, C.-G., Haerendel, G., Kelley, M., Marklund, G., Pfaff, R., Providakes, J., Stenbaek-Nielsen, H. C., Swensson, C., Torbert, R., and Wescott, E. M.: 1990a, ‘Critical Ionization Velocity Interaction in the CRITI Rocket Experiment’, Adv. Space Res. 10, No. 7, 63–66.

    Google Scholar 

  • Brenning, N., Fälthammar, C.-G., Haerendel, G., Kelley, M., Marklund, G., Providakes, J., Stenbaek-Nielsen, H. C., Swensson, C., Torbert, R., and Wescott, E. M.: 1990b, ‘Electrodynamic Interaction between the CRIT I Ionized Barium Streams and the Ambient Ionosphere’, Adv. Space Res. 10, No. 7, 67–70.

    Google Scholar 

  • Brenning, N., Fälthammar, C.-G., Haerendel, G., Kelley, M., Marklund, G., Pfaff, R., Providakes, J., Stenbaek-Nielsen, H. C., Swensson, C., Torbert, R., and Wescott, E. M.: 1991a, ‘Interpretation of the Electric Fields Measured in an Ionospheric Critical Ionization Velocity Experiment’, J. Geophys. Res. 96, 9735–9743.

    Google Scholar 

  • Brenning, N., Kelley, M., Providakes, J., Stenbaek-Nielsen, H. C., and Swensson, C.: 1991b, ‘Barium Swarm: an Ionospheric Alternating Current Generator in CRIT I’, J. Geophys. Res. 96, 9719–9733.

    Google Scholar 

  • Brenning, N., Swenson, C., Kelley, M. C., Providakes, J., and Rorbert, R.: 1991c, ‘The Collective Gyration of a Heavy Ion Cloud in a Magnetized Plasma’, Adv. Space Res. (in press).

  • Brenning, N., Lindberg, L., and Eriksson, A.: 1981, ‘Energization of Electrons in a Plasma Beam Entering a Curved Magnetic Field’, Plasma Phys. 23, 559–574.

    Google Scholar 

  • Buneman, O.: 1961, Stanford Electronics Lab., Tech. Report No. 251–1, Stanford University, Stanford.

    Google Scholar 

  • Chang, T.-F.: 1988, Laboratory Simulations of the Solar Wind-Comet Interaction, Report UCR/IGPP-88/37, Dept. of Physics and Inst. of Geophys. and Planet. Phys., Univ. of California, Riverside.

    Google Scholar 

  • Chang, T.-F., Rahman, H. U., and White, R. S.: 1989, ‘Laboratory Simulation of Cometary Neutral Gas Interaction’, J. Geophys. Res. 94, 5533–5538.

    CAS  PubMed  Google Scholar 

  • Choueri, E. Y., Kelly, A., and Jahn, R. G.: 1985, The Manifestation of Alfvén's Hypothesis of Critical Ionization Velocity in the Performance of MHD Thrusters, AIAA Paper 85-2037, 18th International Electric Propulsion Conference, Alexandria, September 30–October 2, 1985.

  • Danielsson, L.: 1966, ‘Simulation of the Solar Wind Interaction with Comets’, Appl. Phys. Letters 9, 339–341.

    Google Scholar 

  • Danielsson, L.: 1970, ‘Experiment on the Interaction between a Plasma and a Neutral Gas’, Phys. Fluids 13, 2288–2294.

    Google Scholar 

  • Danielsson, L.: 1973, ‘Review of the Critical Velocity of Gas-Plasma Interaction I: Experimental Observations’, Astrophys. Space Sci. 24, 459–485.

    Google Scholar 

  • Danielsson, L. and Brenning, N.: 1975, ‘Experiment on the Interaction between a Plasma and a Neutral Gas II’, Phys. Fluids 18, 661–671.

    Google Scholar 

  • Danielsson, L. and Kasai, G. H.: 1968, ‘Laboratory Simulation of Plasma Phenomena in Comets’, J. Geophys. Res. 73, 259–266.

    Google Scholar 

  • Deehr, C. S., Wescott, E. M., Stenbaek-Nielsen, H., Romick, G. J., Hallinan, T. J., and Föppl, H.: 1982, ‘A Critical Velocity Interaction between Fast Barium and Strontium Atoms and the Terrestrial Ionospheric Plasma’, Geophys. Res. Letters 9, 195–198.

    Google Scholar 

  • Drobyshevskii, E. M.: 1964, ‘The Volt-Ampére Characteristics of a Homopolar Cell’, Soviet Phys. Tech. Phys. 8, 903.

    Google Scholar 

  • Eninger, J.: 1966, Experimental Investigations of an Ionizing Wave in Crossed Electric and Magnetic Fields, Proc. 7th Int. Conf. Phen. Ioniz. Gases, Belgrade, Vol. 1, p. 520.

  • Eselevich, V. G. and Fainshtein, V. G.: 1986, ‘Anomalous Ionization’, Soviet J. Plasma Phys. 12(2), 143–148.

    Google Scholar 

  • Fahleson, U. V.: 1961, ‘Experiments with Plasma Moving Through Neutral Gas’, Phys. Fluids 4, 123–127.

    Google Scholar 

  • Formisano, V., Galeev, A. A., and Sagdeev, R. Z.: 1982, ‘The Role of the Critical Ionization Velocity Phenomena in the Production of Inner Coma Cometary Plasma’, Planetary Space Sci. 30, 491–497.

    Google Scholar 

  • Galeev, A. A.: 1981, Weak Turbulence Theory of Enhanced Gas Ionization by the Plasma Flow, Proc. of an International School and Workshop on Plasma Astrophysics, Varenna, ESA SP-171, 77–82.

  • Goertz, C. K., Machida, S., and Lu, G.: 1990, ‘On the Theory of CIV’, Adv. Space Res. 10, No. 7, 33–45.

    Google Scholar 

  • Goertz, C. K., Machida, S., and Smith, R. A.: 1985, ‘An Asymptotic State of the Critical Ionization Velocity Phenomenon’, J. Geophys. Res. 90, 12230–12234.

    Google Scholar 

  • Hallinan, T. J.: 1988, ‘Observed Rate of Ionization in Shaped-Charge Releases of Barium in the Ionosphere’, J. Geophys. Res. 93, 8705–8712.

    Google Scholar 

  • Haerendel, G.: 1982, ‘Alfvén's Critical Velocity Effect Tested in Space’, Z. Naturforsch. 37a, 728.

    Google Scholar 

  • Haerendel, G.: 1983, The Role of Momentum Transfer to the Ambient Plasma in Critical Velocity Experiments, Active Experiments in Space, Symposium in Alpbach 24–28 May, 1983, ESA SP-195, 245–247.

  • Hasegawa, A.: 1975, Plasma Instabilities and Nonlinear Effects, Springer-Verlag, Berlin, p. 40.

    Google Scholar 

  • Himmel, G. and Piel, A.: 1973, ‘The Velocity Limitation in a Rotating Plasma Device of the Homopolar Type’, J. Phys. D: Appl. Phys. 6, L108-L111.

    Google Scholar 

  • Himmel, G., Möbius, E., and Piel, A.: 1976, ‘Investigation of the Structure and the Plasma Parameters in a “Critical Velocity” Rotating Plasma’, Z. Naturforsch. 31a, 934–941.

    Google Scholar 

  • Himmel, G., Möbius, E., and Piel, A.: 1977, ‘Investigation of the Particle Velocities in a “Critical Velocity” Rotating Plasma’, Z. Naturforsch. 32a, 577–579.

    Google Scholar 

  • Kelley, M. C., Pfaff, R. F., and Haerendel, G.: 1986, ‘Electric Field Measurements During the Condor Critical Velocity Experiment’, J. Geophys. Res. 91, A9, 9939–9946.

    Google Scholar 

  • Kelley, M. C., Swenson, C., Pfaff, R. F., Haerendel, G., and Brenning, N.: 1991, ‘Electric and Magnetic Field Measurements Inside a High-Velocity Neutral Beam Undergoing Ionization’, J. Geophys. Res. 96, 9703–9718.

    Google Scholar 

  • Lai, S. T. and Murad, E.: 1989, ‘Critical Ionization Velocity Experiments in Space’, Planetary Space Sci. 37, 865–872.

    Google Scholar 

  • Lai, S., Denig, W. F., Murad, E., and McNeil, W. J.: 1988a, ‘The Role of Plasma Processes in the Space Shuttle Environment’, Planetary Space Sci. 36, 841–849.

    Google Scholar 

  • Lai, S. T., Murad, E., and McNeil, W. J.: 1988b, ‘The Role of Metastable States in Critical Ionization Velocity Discharges’, J. Geophys. Res. 93, 5871–5878.

    Google Scholar 

  • Lai, S. T., Murad, E., and McNeil, W. J.: 1989, ‘An Overview of Atomic and Molecular Processes in Critical Ionization Velocity Interaction’, IEEE Transactions on Plasma Science 17, 124–134.

    Google Scholar 

  • Lai, S. T., Murad, E., and McNeil, W. J.: 1990a, ‘Critical Ionization Velocity in a Mixture of Species’, Planetary Space Sci. 38, 1011–1016.

    Google Scholar 

  • Lai, S. T., Murad, E., and McNeil, W.: 1990b, ‘Amplification of Critical Velocity Ionization by a Pulsed Neutral Beam’, Geophys. Res. Letters 17, 737–740.

    Google Scholar 

  • Lehnert, B.: 1966, ‘Ionization Process of a Plasma’, Phys. Fluids 9, 774.

    Google Scholar 

  • Lehnert, B.: 1967, ‘Space-Charge Effects by Nonthermal Ions in a Magnetized Plasma’, Phys. Fluids 10, 2216–2225.

    Google Scholar 

  • Lehnert, B.: 1988, ‘Velocity Limitation of a Neutral Dust Cloud Colliding with a Magnetized Plasma’, Astrophys. Space Sci. 144, 31–42.

    Google Scholar 

  • Lehnert, B., Bergström, J., and Holmberg, S.: 1966, ‘Critical Voltage of a Rotating Plasma’, Nuclear Fusion 6, 231–238.

    Google Scholar 

  • Lehnert, B., Bergström, J., Holmberg, S., and Wilner, B.: 1970, ‘On the Interaction between a Fully Ionized Plasma and a Neutral Gas Blanket’, Phys. Scripta 1, 39–45.

    Google Scholar 

  • Lin, S. C.: 1961, Phys. Fluids 4, 1277.

    Google Scholar 

  • Luhmann, J. G. and Russell, C. T.: 1990, ‘An Assessment of the Conditions for Critical Velocity Ionization at the Weakly Magnetized Planets’, Adv. Space Res. 10, No. 7, 71–76.

    Google Scholar 

  • Machida, S. and Goertz, C. K.: 1986, ‘A Simulation Study of the Critical Ionization Velocity Process’, J. Geophys. Res. 91, 11965–11976.

    Google Scholar 

  • Machida, S. and Goertz, C. K.: 1988, ‘The Electromagnetic Effect on the Critical Ionization Velocity Process’, J. Geophys. Res. 93, 11495–11506.

    Google Scholar 

  • Machida, S., Abe, T., and Terasawa, T.: 1984, ‘Computer Simulation of Critical Velocity Ionization’, Phys. Fluids 27, 1928.

    Google Scholar 

  • Machida, S. and Goertz, C. K.: 1988, ‘The Electromagnetic Effect on the Critical Ionization Velocity Process’, J. Geophys. Res. 93, 11495–11506.

    Google Scholar 

  • Machida, S., Abe, T., and Terasawa, T.: 1984, ‘Computer Simulation of Critical Velocity Ionization’, Phys. Fluids 27, 1928.

    Google Scholar 

  • Machida, S., Goertz, C. K., and Lu, G.: 1988, ‘Simulation Study of the Ionizing Front in the Critical Ionization Velocity Phenomenon’, J. Geomagn. Geoelectr. 40, No. 10, 1205–1219.

    Google Scholar 

  • Mattoo, S. K. and Venkataramani, N.: 1980, ‘On the Threshold Velocity in the Interaction between a Magnetized Plasma and a Neutral Gas’, Phys. Letters 76a, 257–260.

    Google Scholar 

  • McBride, J. B., Ott, E., Boris, J. P., and Orens, J. H.: 1972, ‘Theory and Simulation of Turbulent Heating by the Modified Two-Stream Instability’, Phys. Fluids 15, 2367.

    Google Scholar 

  • McNeil, W. J., Lai, S. T., and Murad, E.: 1990, ‘Interplay between Collective and Collisional Processes in Critical Velocity Ionization’, J. Geophys. Res. 95, 10345–10356.

    Google Scholar 

  • Murad, E. and Lai, S.: 1986, ‘Effect of Dissociative Electron-Ion Recombination on the Propagation of Critical Ionization Discharges’, J. Geophys. Res. 91, 13745–13749.

    Google Scholar 

  • Möbius, E.: 1983, Critical Velocity Experiments in Space, Active Experiments in Space, Symposium in Alpbach, 24–28 May, 1983, ESA SP-195, 215–226.

  • Möbius, E., Boswell, R. W., Piel, A., and Henry, D.: 1979a, ‘A Spacelab Experiment on the Critical Ionization Velocity’, Geophys. Res. Letters 6, 29–31.

    Google Scholar 

  • Möbius, E., Piel, A., and Himmel, G.: 1979b, Z. Naturforsch. 34a, 405.

    Google Scholar 

  • Möbius, E., Papadopoulos, K., and Piel, A.: 1987, ‘On the Turbulent Heating and the Threshold Conditions in the Critical Ionization Velocity Interaction’, Planetary Space Sci. 35, 345–352.

    Google Scholar 

  • Newell, P. T.: 1985, ‘Review of the Critical Ionization Velocity Effect in Space’, Rev. Geophys. 23, No. 1, 93–104.

    Google Scholar 

  • Newell, P. T. and Torbert, R.: 1985, ‘Competing Atomic Processes in Ba and Sr Injection Critical Velocity Experiments’, Geophys. Res. Letters 12, 835–838.

    Google Scholar 

  • Nickenig, L. and Piel, A.: 1987, Direct Observations of High Frequency Emissions from a Critical Velocity Rotating Plasma, Report 87-N4–160, Institut für Experimentalphysik II der Ruhr-Universität Bochum, Germany.

    Google Scholar 

  • Papadopoulos, K.: 1982, Electron and Ion Driven Plasma Discharges with Collective Dissipation, Proc. of Workshop on Alfvén's Critical Velocity Effect, Report, Max-Planck-Inst. für Extraterr. Phys., Garching, Germany, p. 178.

    Google Scholar 

  • Papadopoulos, K.: 1983, The Space Shuttle Environment as Evidence of Critical Ionization Phenomena, Active Experiments in Space, Symposium in Alpbach, 24–28 May, 1983, ESA SP-195, 227–244.

  • Papadopoulos, K.: 1984, ‘On the Shuttle Glow (the Plasma Alternative)’, Radio Sci. 19, 571–577.

    Google Scholar 

  • Person, J. C., Resdenes, D., Petschek, H., and Hastings, D. E.: 1990, ‘Effects of Collisional Processes on the Critical Velocity Hypothesis’, J. Geophys. Res. 95, 4039–4055.

    Google Scholar 

  • Pfaff, R. F., Kelley, M. C., Brenning, N., Providakes, J. F., Swenson, C., Torbert, R., and Haerendel, G.: 1991, Plasma Waves Created by Large Amplitude Perturbations in the Mid-Latitude Ionosphere (in preparation).

  • Piel, A.: 1990, ‘Review of Laboratory Experiments on Alfvén's Critical Ionization Velocity’, Adv. Space Res. 10, No. 7, 7–16.

    Google Scholar 

  • Piel, A. and Nickenig, L.: 1990, ‘Observations of High-Frequency Emissions from a Critical Velocity Rotating Plasma’, Adv. Space Res. 10, No. 7, 7–16.

    Google Scholar 

  • Piel, A., Möbius, E., and Himmel, G.: 1978, The Origin of Turbulent Heating in a Critical Velocity Rotating Plasma, Institut für Experimentalphysik II der Ruhr-Universität Bochum, 78-M2-037.

  • Piel, A., Möbius, E., and Himmel, G.: 1980, ‘The Influence of the Plasma Inhomogeneity on the Critical Velocity Phenomenon’, Astrophys. Space Sci. 72, 211–221.

    Google Scholar 

  • Providakes, J., Swartz, W. E., Kelley, M. C., Djuth, F. T., Noble, S., and Jost, R. J.: 1990, ‘Radar Observations of Ion Cyclotron Waves Associated with Two Barium Shaped Charge Releases’, J. Geophys. Res. 95, 21050–21067.

    Google Scholar 

  • Providakes, J., Kelly, M. C., Pfaff, R., Brenning, N., Torbert, R., Swenson, C., and Swartz, W. E.: 1991, ‘In Situ and Radar Observations of Ion Cyclotron Waves Associated with Two Barium Shaped Charge Releases’, J. Geophys. Res. (in press).

  • Raadu, M. A.: 1975, Critical Ionization Velocity and Electrostatic Instabilities, Royal Institute of Technology, Stockholm, TRITA-EPP-75–28.

    Google Scholar 

  • Raadu, M. A.: 1976, quoted as private communication in Axnäs, 1977.

  • Raadu, M. A.: 1978a, ‘Critical Ionization Velocity and the Dynamics of a Coaxial Plasma Gun’, J. Phys. D: Appl. Phys. 11, 363–378.

    Google Scholar 

  • Raadu, M. A.: 1978b, ‘The Role of Electrostatic Instabilities in the Critical Ionization Velocity Mechanism’, Astrophys. Space Sci. 55, 125–138.

    Google Scholar 

  • Raadu, M. A.: 1979, Critical Ionization Effects in Astrophysical Plasmas, Royal Institute of Technology, Stockholm, TRITA-EPP-79–14.

    Google Scholar 

  • Raadu, M. A.: 1980, The Critical Ionization Velocity (and Space Plasmas), Royal Institute of Technology, Stockholm, TRITA-EPP-80–50.

    Google Scholar 

  • Raadu, M. A.: 1981, in H. Kikuchi (ed.), The Critical Ionization Velocity, Relation between Laboratory and Space Plasmas, pp. 13–21.

  • Raadu, M. A.: 1982, The Critical Ionization Velocity Mechanism for the Case of Gas Mixtures, Royal Institute of Technology, Stockholm, TRITA-EPP-82–10.

    Google Scholar 

  • Scholer, M.: 1970, ‘On the Motion of Artificial Ion Clouds in the Magnetosphere’, Planetary Space Sci. 18, 977–1004.

    Google Scholar 

  • Sherman, J. C.: 1967, Ph.D. Thesis, Oxford University.

  • Sherman, J. C.: 1968, ‘Alfvén's Critical Velocity Hypothesis’, Nature 217, 341–342.

    Google Scholar 

  • Sherman, J. C.: 1969, Some Theoretical Aspects of the Interaction between a Plasma Stream and a Neutral Gas in a Magnetic Field, Royal Institute of Technology, Stockholm, TRITA-EPP-69–29.

    Google Scholar 

  • Sherman, J. C.: 1970, The Space-Charge Effects of Non-Thermal Ions in a Magnetic Field, Including the Effects of a Background Plasma, Royal Institute of Technology, Stockholm, TRITA-EPP-70–14.

    Google Scholar 

  • Sherman, J. C.: 1973, ‘Review of the Critical Velocity of Gas-Plasma Interaction II: Theory’, Astrophys. Space Sci. 24, 487–510.

    Google Scholar 

  • Simon, A.: 1959, Research Report No. 59-RL-2322E, General Electric Research Laboratory.

  • Singh, N.: 1989, Simulations of Field-Aligned Plasma Expansion in Critical Ionization Velocity Experiments, IEEE Transactions on Plasma Science, Vol. 17, pp. 116–123.

    Google Scholar 

  • Singh, N.: 1990, ‘Magnetic Field-Aligned Plasma Expansion in CIV Experiments’, Adv. Space Res. 10, No. 7, 59–62.

    Google Scholar 

  • Sokhol, P. M.: 1968, ‘Analysis of a Rotating Plasma Experiment’, Phys. Fluids 11, 637.

    Google Scholar 

  • Srnka, L. J.: 1977, ‘Critical Velocity Phenomena and the LTP’, Phys. Earth Planet. Interiors 14, 321–329.

    Google Scholar 

  • Stenbaek-Nielsen, H. C., Wescott, E. M., Rees, D., Valenzuela, A., and Brenning, N.: 1990a, ‘Non-Solar UV Produced Ions Observed Optically from the “CRIT I” Critical Velocity Ionization Experiment’, J. Geophys. Res. 95, 7749–7757.

    Google Scholar 

  • Stenbaek-Nielsen, H. C., Wescott, E. M., Haerendel, G., and Valenzuela, A.: 1990b, ‘Optical Observations on the CRIT II Critical Ionization Velocity Experiment’, Geophys. Res. Letters 17, 1601–1604.

    Google Scholar 

  • Swenson, C., Kelley, M. C., Primdahl, F., and Baker, K. D.: 1990, ‘CRIT II Electric, Magnetic, and Density Observations in an Ionizing Neutral Stream’, Geophys. Res. Letters 17, No. 12, 2337–2340.

    Google Scholar 

  • Swenson, C., Kelley, M. C., Brenning, N., Torbert, R., Primdahl, F., and Baker, K. D.: 1991, ‘CRIT II Electric, Magnetic, and Density Measurements in an Ionizing Neutral Stream’, Adv. Space Res. (in press).

  • Tanaka, M. and Papadopoulos, K.: 1983, ‘Creation of High-Energy Electron Tails by Means of the Modified Two-Stream Instability’, Phys. Fluids 26, 1697.

    Google Scholar 

  • Torbert, R. B.: 1988, ‘Critical Velocity Experiments in Space’, Adv. Space Res. 8, No. 1.

  • Torbert, R. B.: 1990a, ‘Review of Critical Ionization Velocity Experiments in the Ionosphere’, Adv. Space Res. 10, No. 7, 47–58.

    Google Scholar 

  • Torbert, R. B.: 1990b, ‘Particle Measurements in the CRIT II Ionospheric CIV Experiment, Adv. Space Res. (in press).

  • Torbert, R. B. and Newell, P. T.: 1986, ‘A Magnetospheric Critical Velocity Experiment: Particle Results’, J. Geophys. Res. 91, 9947–9955.

    Google Scholar 

  • Vainshtein, L. A., Ochkur, V. I., Rakhovskii, V. I., and Stepanov, A. M.: 1972, ‘Absolute Values of Electron Impact Ionization Cross Sections for Magnesium, Calcium, Strontium and Barium’, Soviet Phys. JETP 34, 271–275 (English transl.).

    Google Scholar 

  • Varma, R. K.: 1978, ‘On Alfvén's Critical Velocity for the Interaction of a Neutral Gas with a Moving Magnetized Plasma’, Astrophys. Space Sci. 55, 113–124.

    Google Scholar 

  • Venkataramani, N. and Mattoo, S. K.: 1980a, ‘On Plasma-Neutral Gas Interaction’, Pramana 15, 2, 117–136.

    Google Scholar 

  • Venkataramani, N. and Mattoo, S. K.: 1980b, ‘Plasma Retardation in Alfvén's Critical Velocity Phenomenon’, Phys. Letters 76a, 5.6, 393–398.

    Google Scholar 

  • Venkataramani, N. and Mattoo, S. K.: 1986, ‘Space Charge Sheath in Plasma-Neutral Gas Interaction’, Astrophys. Space Sci. 121, 83–103.

    Google Scholar 

  • Wallis, M.: 1971, quoted as private communication by Sherman, 1973.

  • Wescott, E. M., Stenbaek-Nielsen, H. C., Hallinan, T., Föppl, H., and Valenzuela, A.: 1986, ‘Star of Lima: Overview and Optical Diagnostics of a Barium Alfvén Critical Velocity Experiment’, J. Geophys. Res. 91, A9, 9923–9931.

    Google Scholar 

  • Wilcox, J. M.: 1964, ‘Experimental Study of the Propagation of an Ionizing Wave in a Coaxial Plasma Gun’, Phys. Fluids Suppl. 7, S51-S56.

    Google Scholar 

  • Williams, A. C.: 1987, ‘The Formation of a Double Layer Leading to the Critical Velocity Phenomenon’, Laser and Particle Beams 5, part 2, 197–202.

    Google Scholar 

  • Wright, A. N. and Southwood, D. J.: 1987, ‘Stationary Alfvénic Structures’, J. Geophys. Res. 92, 1167–1175.

    Google Scholar 

  • Yee, J. H. and Abreu, V. J.: 1983, ‘Visible Glow Induced by Spacecraft-Environment Interaction’, Geophys. Res. Letters 10, 126–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenning, N. Review of the CIV phenomenon. Space Sci Rev 59, 209–314 (1992). https://doi.org/10.1007/BF00242088

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242088

Keywords

Navigation