Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 4, pp 361–367 | Cite as

Cyclic voltammetry at a metallic electrode: application to the reduction of nickel, tantalum and niobium salts in fused electrolytes

  • F. Lantelme
  • Y. Berghoute
  • A. Salmi
Article

Abstract

Electrodeposition of metals was studied by linear sweep voltammetry at a metallic electrode. A mathematical analysis is available for reactions controlled by diffusion. A finite difference algorithm is presented for digital simulation of complex mechanisms comprising adsorption, multistep reaction and formation of a surface layer of insoluble compounds. It was used to study the deposition of tantalum and niobium from fused salts.

Keywords

Physical Chemistry Nickel Surface Layer Cyclic Voltammetry Niobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Inman and S. H. White, in ‘Molten Salt Electrolysis Production’, International SymposiumGrenoble (1977), Institution of Mining and Metallurgy, London, p. 51.Google Scholar
  2. [2]
    T. Rosenqvist, ‘Principles of Extractive Metallurgy’, McGraw-Hill, New York (1974) p.426.Google Scholar
  3. [3]
    A. Barhoun, F. Lantelme, M. E. de Roy and J. P. Besse, Materials Science Forum 73–75 (1991) 313.Google Scholar
  4. [4]
    F. Lantelme, A. Barhoun and J. Chevalet, J. Electrochem. Soc. 140 (1993) 324.Google Scholar
  5. [5]
    F. Lantelme and E. Cherrat, J. Electroanal. Chem. 244 (1988) 61.Google Scholar
  6. [6]
    F. Lantelme, D. Inman and D. G. Lovering, in ‘Molten Salt Techniques’ (edited by R. J. Gale and D. G. Lovering), Plenum Press, New York (1984) Vol. 2, p.181.Google Scholar
  7. [7]
    T. Vargas and D. Inman, J. Appl. Electrochem. 17 (1987) 270.Google Scholar
  8. [8]
    F. Lantelme, H. Alexopoulos, D. Devilliers and M. Chemla, J. Electrochem. Soc. 138 (1991) 1665.Google Scholar
  9. [9]
    Y. Berghoute, A. Salmi and F. Lantelme, J. Electroanal. Chem., in press.Google Scholar
  10. [10]
    M. Abramowitz and I. A. Stegun, in ‘Handbook of Mathematical Functions’, 9th edn, Dover Publications, New York (1972) p. 319.Google Scholar
  11. [11]
    G. J. Janz, C. B. Allen, N. P. Bansal, R.M. Murphy and R. P. T. Tomkins, in ‘Physical Properties Data Compilations Relevant to Energy Storage’, NSRD-NBS 61, Part II (1979) p. 232.Google Scholar
  12. [12]
    D. Britz, ‘Digital Simulation in Electrochemistry’, Springer, Berlin 1988).Google Scholar
  13. [13]
    F. Lantelme, J-F. Equey, S. Müller and M. Chemla, J. Phys. Chem. 95 (1991) 905.Google Scholar
  14. [14]
    L. Arurault, J. Bouteillon, J. de Lepinay, A. Khalidi and J. C. Poignet, Materials Science Forum 73–75 (1991) 305.Google Scholar
  15. [15]
    A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods’, John Wiley, New York (1980).Google Scholar
  16. [16]
    S. A. Kuznetsov, A. G. Morachevskii and P. T. Stangrit, Soviet Electrochem. 18 (1982) 1387.Google Scholar
  17. [17]
    L. P. Polyakova, E. G. Polyakov, A. I. Sorokin and P. T. Stangrit, J. Appl. Electrochem. 22 (1992) 628.Google Scholar
  18. [18]
    D. Brown, ‘Comprehensive Chemistry’, Vol. 3, Pergamon Press, Oxford (1973) p.553.Google Scholar
  19. [19]
    G. Picard, D. Ferry and P. Bocage, ‘Rapport d'Activité du PIRSEM’, Vol. III (1987) p.229.Google Scholar
  20. [20]
    F. Lantelme, A. Barhoun, G. Li and J.-P. Besse, J. Electrochem. Soc. 139 (1992) 1249.Google Scholar
  21. [21]
    A. Barhoun, Y. Berghoute and F. Lantelme, J. Alloys Compd. 179 (1992) 241.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • F. Lantelme
    • 1
  • Y. Berghoute
    • 1
  • A. Salmi
    • 1
  1. 1.Laboratoire d'ElectrochimieParis, Cedex 05France

Personalised recommendations