Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 4, pp 344–349 | Cite as

Comparative study of copper behaviour in bicarbonate and phosphate aqueous solutions and effect of chloride ions

  • M. Drogowska
  • L. Brossard
  • H. Ménard
Article

Abstract

Copper oxidation in aqueous solutions of pH 8 showed some differences in the presence of bicarbonate and phosphate ions. The bicarbonate ions did not interfere with Cu2O film formation but the Cu2+ ions were stabilized by the complexing action of CO 2− 3 anions. In phosphate solutions, copper dissolved in the range of potentials associated with the Cu(I) oxidation state and the Cu(II) compound on the surface resulted in an extensive passivation region. In both solutions, a higher ion concentration caused an increase in the anodic current, suggesting that the copper ions were stabilized by the complexing action of the electrolyte. The copper oxidation current in a bicarbonate solution was higher than that observed in a phosphate solution of the same concentration. The thickness of the Cu(II) film rather than the Cu(I) layer appears to be the important factor related to the stability of the passive layer on the copper surface. The shift in the breakdown potential toward more positive values indicates that both bicarbonate and phosphate ions inhibit localized corrosion due to the presence of chloride ions. Their protective effect depends on the concentration of each anion, although the concentration of chloride ions necessary for pitting is larger in phosphate solutions than in bicarbonate solutions. In both solutions, long-term immersion of copper under anodic polarization results in the precipitation of a protective coating.

Keywords

Bicarbonate Cu2O Anodic Polarization Passive Layer Copper Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. W. Shoesmith, T. E. Rummery, D. Owen and W. Lee, J. Electrochem. Soc. 123 (1976) 790.Google Scholar
  2. [2]
    Idem, Electrochim. Acta 22 (1983) 1403.Google Scholar
  3. [3]
    D. W. Shoesmith, W. Lee and M. G. Bailey, Proceedings of the Electrochemical Society Meeting on Electrocrystallization, Hollywood, Florida, Oct. 1980, p. 272.Google Scholar
  4. [4]
    D. W. Shoesmith, S. Sunder, M. G. Bailey, G. J. Wallace and F. W. Stanchell, J. Electroanal. Chem. 143 (1983) 153.Google Scholar
  5. [5]
    H. H. Strehblow and B. Titze, Electrochim. Acta 25 (1980) 839.Google Scholar
  6. [6]
    H. D. Speckmann, M. M. Lohrengel, J. W. Schultze and H. H. Strehblow, Ber. Bunsenges. Phys. Chem. 89 (1985) 392.Google Scholar
  7. [7]
    M. M. Lohrengel, J. W. Schultze, H. D. Speckmann and H. H. Strehblow, Electrochim. Acta 32 (1987) 733.Google Scholar
  8. [8]
    U. Collisi and H. H. Strehblow, J. Electroanal. Chem. 284 (1990) 385.Google Scholar
  9. [9]
    L. D. Burke, M. J. G. Ahern and T. G. Ryan, J. Electrochem. Soc. 137 (1990) 553.Google Scholar
  10. [10]
    L. D. Burke and T. G. Ryan, ibid. 137 (1990) 1358.Google Scholar
  11. [11]
    Y. A. El-Tantawy, F. M. Al-Kharafi and A. Katrib, J. Electroanal. Chem. 125 (1981) 321.Google Scholar
  12. [12]
    M. Drogowska, L. R. Brossard and H. Menard, Surf. Coat. Technol. 34 (1988) 383.Google Scholar
  13. [13]
    M. Drogowska, L. R. Brossard, H. Menard and A. Lasia, ibid. 34 (1988) 401.Google Scholar
  14. [14]
    M. Drogowska, L. R. Brossard and H. Menard, J. Electrochem. Soc. 139 (1992) 39.Google Scholar
  15. [15]
    Idem, ibid. 139 (1992) 2787.Google Scholar
  16. [16]
    Idem, ibid. 140 (1993) 1247.Google Scholar
  17. [17]
    I. Milosev, M. Metikos-Hucovic, H. Menard, L. R. Brossard and M. Drogowska, ibid. 139 (1992) 2409.Google Scholar
  18. [18]
    N. de Zoubov, J. Van Muylder, P. Van Lear and M. Pourbaix, CEBELOR Rapport Tech. RT 133 (1966).Google Scholar
  19. [19]
    P. Duby, `The Thermodynamic Properties of Aqueous Inorganic Copper Systems,' International Copper Research Association NSRDS, NBS (1977).Google Scholar
  20. [20]
    M. Pourbaix, ‘Atlas of Electrochemical Equilibria in Aqueous Solutions’, National Association of Corrosion Engineers (NACE), Houston, TX (1974).Google Scholar
  21. [21]
    L. G. Sillen and A. E. Martell, ‘Stability Constants of Metal-Ion Complexes’, The Chemical Society, London (1964).Google Scholar
  22. [22]
    J. F. Scaife, Can. J. Chem. 35 (1957) 1332.Google Scholar
  23. [23]
    P. Schindler, M. Reiner and H. Gamsjager, Helv. Chim. Acta 51 (1968) 1845.Google Scholar
  24. [24]
    M. G. Figueroa, R. C. Salvarezza and A. J. Arvia, Electrochim. Acta 31 (1986) 665.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Drogowska
    • 1
  • L. Brossard
    • 2
  • H. Ménard
    • 1
  1. 1.Département de ChimieUniversité de SherbrookeSherbrookeCanada
  2. 2.Institut de Recherche d'Hydro-Québec (IREQ)VarennesCanada

Personalised recommendations