Skip to main content
Log in

Inhibition of the hydrogen evolution reaction on aluminium covered by ‘spontaneous’ oxide

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behaviour of aluminium covered by a thin ‘spontaneous’ oxide film was studied as a function of temperature and electrolyte composition at pH 1.3 The rectification mechanism of the charge transfer reactions is discussed on the basis of E/I characteristics. Tafel plots for the hydrogen evolution reaction showed anomalous slopes between 2.3 × 3RT/F and 2.3 × 4RT/F, depending on temperature. The inhibiting effects of 1 and 2-naphthylamines on the corrosion kinetics of aluminium in acid media (HClO4 and NaCl + HCl) were determined using electrochemical methods. Consideration of the protonation of amines and the effects of the positively charged surface suggest that the observed excellent inhibition is due to the planar orientation (with π-electron bonds) of the adsorbed inhibitor molecules and the existence of synergetic effects. The degree of surface coverage was found to increase with temperature up to 40°C. At approximately 40°C the adsorbed molecules probably change their orientation becoming vertically adsorbed on the surface with strong lateral repulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gruberger and E. Gileadi, Electrochim. Acta 31 (1986) 1531.

    Google Scholar 

  2. J. W. Diggleand A. K. Vijh, ‘Oxides and Oxide Films’, Vol. 4, Marcel Dekkar, New York (1976) p. 171.

    Google Scholar 

  3. F. Qvari, L. Tomcsanyi and T. Turmezey, Electrochim. Acta 33 (1988) 323.

    Google Scholar 

  4. H. H. Streblow, Werkst. Korros. 29 (1978) 654.

    Google Scholar 

  5. J. D. Talati and D. K. Gandhi, Corros. Sci. 23 (1983) 1315.

    Google Scholar 

  6. W. Kautek, ibid. 28 (1988) 173.

    Google Scholar 

  7. T. Mimani, S. M. Mayanna and N. Munichandraiah, J. Appl. Electrochem. 23 (1993) 339.

    Google Scholar 

  8. I. L. Rozenfeld, ‘Corrosion Inhibitors’, MacGraw-Hill; New York (1981) p. 182.

    Google Scholar 

  9. M. N. Desai, B. C. Thakar, P. M. Chiaya and M. H. Gandi Corros. Sci. 16 (1976) 9.

    Google Scholar 

  10. N. Hackerman and A. C. Makrides, Ind. Eng. Chem. 46 (1954) 523.

    Google Scholar 

  11. S. L. Granese and B. M. Rosales, Proc. 7th European Symp. Corrosion Inhibitors, Ann. Univ. Ferrara, N.S., Sez. V, Suppl. N. 9, (1990) p. 73.

  12. N. Hackerman and H. Kaesche, J. Electrochem. Soc. 105 (1958) 191.

    Google Scholar 

  13. S. M. Hassan, M. N. Mousa, F. I. Taha and A. S. Fouda, Corros. Sci. 21 (1981) 439.

    Google Scholar 

  14. A.I. Onuchukwu and F. K. Oppong-Boachie, ibid. 26 (1986) 919.

    Google Scholar 

  15. D. D. N. Singh, M. M. Singh, R. S. Chaudhary and C. V. Agarwal, Electrochim. Acta 26 (1981) 1051.

    Google Scholar 

  16. L. Homer and K. Maisel, Werkst. Korros. 29 (1978) 654.

    Google Scholar 

  17. M. Tkaicec, Ph.D. thesis, University of Zagreb, Zagreb (1977).

    Google Scholar 

  18. S. Sato, Y. Itoi and A. Hasumi, Electrochim. Acta 26 (1981) 1303.

    Google Scholar 

  19. J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Vol. 2, Plenum Press, New York (1972) p. 883.

    Google Scholar 

  20. K. B. Oldham and F. Mansfeld, Corros. Sci. 11 (1971) 787, and Corrosion 27 (1971) 434.

    Google Scholar 

  21. R. E. Meyer, J. Electrochem. Soc. 107 (1960) 847.

    Google Scholar 

  22. H. J. Miao and D. L. Piron, Electrochim. Acta 38 (1993) 1079.

    Google Scholar 

  23. A. K. Vijh, J. Phys. Chem. 73 (1969) 506.

    Google Scholar 

  24. A. Despic and V. P. Parkhutik, in ‘Modern Aspects of Electrochemistry’, Vol. 20, (edited by J. O'M. Bockris, R. E. White and B. E. Conway), Plenum Press, New York (1989) p. 401.

    Google Scholar 

  25. M. Porbaix, ‘Lectures on Electrochemical Corrosion’, Plenum Press, New York (1973) p. 168.

    Google Scholar 

  26. G. A. Parks, Chem. Rev. 65 (1965) 177.

    Google Scholar 

  27. J. A. Yopps and D. W. Fuerstenau, J. Colloid Sci. 19 (1964) 61.

    Google Scholar 

  28. M. Elboujdani, E. Ghali, R. G. Barradas and M. Girgis, Corros. Sci. 30 (1990) 855.

    Google Scholar 

  29. A. Rauscher, G. Kutsan, Z. Lukacs and E. Kalman, Proc. 7th European Symp. Corrosion Inhibitors, Ann. Univ. Ferrara, N.S., Sez V, Suppl. N. 9 (1990) p. 293.

  30. B. G. Ateya, B. E. Anadouli and F. M. Nizamy, Corros. Sci. 24 (1984) 497, 509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metikos-Hukovic, M., Babić, R., Grubać, Z. et al. Inhibition of the hydrogen evolution reaction on aluminium covered by ‘spontaneous’ oxide. J Appl Electrochem 24, 325–331 (1994). https://doi.org/10.1007/BF00242061

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242061

Keywords

Navigation