Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 4, pp 325–331 | Cite as

Inhibition of the hydrogen evolution reaction on aluminium covered by ‘spontaneous’ oxide

  • M. Metikos-Hukovic
  • R. Babić
  • Z. Grubać
  • S. Brinć
Article

Abstract

The electrochemical behaviour of aluminium covered by a thin ‘spontaneous’ oxide film was studied as a function of temperature and electrolyte composition at pH 1.3 The rectification mechanism of the charge transfer reactions is discussed on the basis of E/I characteristics. Tafel plots for the hydrogen evolution reaction showed anomalous slopes between 2.3 × 3RT/F and 2.3 × 4RT/F, depending on temperature. The inhibiting effects of 1 and 2-naphthylamines on the corrosion kinetics of aluminium in acid media (HClO4 and NaCl + HCl) were determined using electrochemical methods. Consideration of the protonation of amines and the effects of the positively charged surface suggest that the observed excellent inhibition is due to the planar orientation (with π-electron bonds) of the adsorbed inhibitor molecules and the existence of synergetic effects. The degree of surface coverage was found to increase with temperature up to 40°C. At approximately 40°C the adsorbed molecules probably change their orientation becoming vertically adsorbed on the surface with strong lateral repulsion.

Keywords

Oxide Film HClO4 Electrochemical Behaviour Inhibitor Molecule Adsorbed Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Gruberger and E. Gileadi, Electrochim. Acta 31 (1986) 1531.Google Scholar
  2. [2]
    J. W. Diggleand A. K. Vijh, ‘Oxides and Oxide Films’, Vol. 4, Marcel Dekkar, New York (1976) p. 171.Google Scholar
  3. [3]
    F. Qvari, L. Tomcsanyi and T. Turmezey, Electrochim. Acta 33 (1988) 323.Google Scholar
  4. [4]
    H. H. Streblow, Werkst. Korros. 29 (1978) 654.Google Scholar
  5. [5]
    J. D. Talati and D. K. Gandhi, Corros. Sci. 23 (1983) 1315.Google Scholar
  6. [6]
    W. Kautek, ibid. 28 (1988) 173.Google Scholar
  7. [7]
    T. Mimani, S. M. Mayanna and N. Munichandraiah, J. Appl. Electrochem. 23 (1993) 339.Google Scholar
  8. [8]
    I. L. Rozenfeld, ‘Corrosion Inhibitors’, MacGraw-Hill; New York (1981) p. 182.Google Scholar
  9. [9]
    M. N. Desai, B. C. Thakar, P. M. Chiaya and M. H. Gandi Corros. Sci. 16 (1976) 9.Google Scholar
  10. [10]
    N. Hackerman and A. C. Makrides, Ind. Eng. Chem. 46 (1954) 523.Google Scholar
  11. [11]
    S. L. Granese and B. M. Rosales, Proc. 7th European Symp. Corrosion Inhibitors, Ann. Univ. Ferrara, N.S., Sez. V, Suppl. N. 9, (1990) p. 73.Google Scholar
  12. [12]
    N. Hackerman and H. Kaesche, J. Electrochem. Soc. 105 (1958) 191.Google Scholar
  13. [13]
    S. M. Hassan, M. N. Mousa, F. I. Taha and A. S. Fouda, Corros. Sci. 21 (1981) 439.Google Scholar
  14. [14]
    A.I. Onuchukwu and F. K. Oppong-Boachie, ibid. 26 (1986) 919.Google Scholar
  15. [15]
    D. D. N. Singh, M. M. Singh, R. S. Chaudhary and C. V. Agarwal, Electrochim. Acta 26 (1981) 1051.Google Scholar
  16. [16]
    L. Homer and K. Maisel, Werkst. Korros. 29 (1978) 654.Google Scholar
  17. [17]
    M. Tkaicec, Ph.D. thesis, University of Zagreb, Zagreb (1977).Google Scholar
  18. [18]
    S. Sato, Y. Itoi and A. Hasumi, Electrochim. Acta 26 (1981) 1303.Google Scholar
  19. [19]
    J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, Vol. 2, Plenum Press, New York (1972) p. 883.Google Scholar
  20. [20]
    K. B. Oldham and F. Mansfeld, Corros. Sci. 11 (1971) 787, and Corrosion 27 (1971) 434.Google Scholar
  21. [21]
    R. E. Meyer, J. Electrochem. Soc. 107 (1960) 847.Google Scholar
  22. [22]
    H. J. Miao and D. L. Piron, Electrochim. Acta 38 (1993) 1079.Google Scholar
  23. [23]
    A. K. Vijh, J. Phys. Chem. 73 (1969) 506.Google Scholar
  24. [24]
    A. Despic and V. P. Parkhutik, in ‘Modern Aspects of Electrochemistry’, Vol. 20, (edited by J. O'M. Bockris, R. E. White and B. E. Conway), Plenum Press, New York (1989) p. 401.Google Scholar
  25. [25]
    M. Porbaix, ‘Lectures on Electrochemical Corrosion’, Plenum Press, New York (1973) p. 168.Google Scholar
  26. [26]
    G. A. Parks, Chem. Rev. 65 (1965) 177.Google Scholar
  27. [27]
    J. A. Yopps and D. W. Fuerstenau, J. Colloid Sci. 19 (1964) 61.Google Scholar
  28. [28]
    M. Elboujdani, E. Ghali, R. G. Barradas and M. Girgis, Corros. Sci. 30 (1990) 855.Google Scholar
  29. [29]
    A. Rauscher, G. Kutsan, Z. Lukacs and E. Kalman, Proc. 7th European Symp. Corrosion Inhibitors, Ann. Univ. Ferrara, N.S., Sez V, Suppl. N. 9 (1990) p. 293.Google Scholar
  30. [30]
    B. G. Ateya, B. E. Anadouli and F. M. Nizamy, Corros. Sci. 24 (1984) 497, 509.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. Metikos-Hukovic
    • 1
  • R. Babić
    • 1
  • Z. Grubać
    • 2
  • S. Brinć
    • 2
  1. 1.Department of Electrochemistry, Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  2. 2.Department of Inorganic Chemistry, Faculty of TechnologyUniversity of Split, N. Tesle 10Croatia

Personalised recommendations