Advertisement

Journal of Applied Electrochemistry

, Volume 24, Issue 4, pp 303–309 | Cite as

Effect of flow characteristics on the diffusion-limited current density in an electrodeposition cell

  • L. Vanhée
  • J. C. Monnier
  • R. Winand
  • M. Stanislas
Article

Abstract

The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes, one of which may be in motion, are demonstrated by means of numerical and experimental studies. The analysis is carried out for the case of zinc electrodeposition. A model is proposed, which takes into account the production of hydrogen, to represent the variation of the diffusion limited current density as a function of the flow characteristics and of the solution composition.

Keywords

Hydrogen Zinc Physical Chemistry Experimental Study Main Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Winand, ‘High current density electrocrystallization’. Proc. Int. Conf. on Zinc and Zinc Alloy Coated Steel Sheet (GALVAT-ECH)Tokyo, The Iron and Steel Institute of Japan (1989).Google Scholar
  2. [2]
    J. C. Monnier, ‘Hydrodynamique des écoulements turbulents dans les cellules d'électro-déposition’. Thèse de doctorat, UST Lille Flandres Artois (1989).Google Scholar
  3. [3]
    J. Newman, ‘Electrochemical systems’, Prentice-Hall, New York (1973).Google Scholar
  4. [4]
    L. Vanhee, ‘Contribution à l'étude du comportement hydrodynamique des cellules d'électro-déposition’. Thèse de doctorat, UST Lille Flandres Artois (1991).Google Scholar
  5. [5]
    N. Ibl, Electrochim. Acta 22 (1977) 465.Google Scholar
  6. [6]
    H. M. Wang, S. F. Chen, T. J. O'Keefe, M. Degrez and R. Winand, J. Appl. Electrochem. 19 (1989) 174.Google Scholar
  7. [7]
    D. J. Pickett and K. L. Ong, Electrochim. Acta 19 (1974) 875.Google Scholar
  8. [8]
    A. Weymeersch, R. Winand and L. Renard, Plat. Surf. Finish. 68 (1981) 56; 68 (1981) 1l8.Google Scholar
  9. [9]
    R. G. Deissler, ‘Analysis of turbulent heat transfer and flow in the entrance regions of smooth passages’. Comittee for Aeronautics, Report 3016 (1953).Google Scholar
  10. [10]
    M. Degrez and R. Winand, ‘Contribution à la mise au point de la méthode de mesure des densités de courant limite de diffusion par co-déposition d'un traceur. Cas particulier du cuivre’. Revue ATB Met. XIX (1/2) (1979) 2l.Google Scholar
  11. [11]
    F. A. Rodriguez, M. Degrez and R. Winand, Oberfläche Surface 30(8) (1989) 20.Google Scholar
  12. [12]
    M. Degrez, F. A. Rodriguez and R. Winand, Oberfläche Surface 30(9) (1989) 14.Google Scholar
  13. [13]
    R. Winand, J. Appl. Electrochem. 21, (1991) 377.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • L. Vanhée
    • 1
  • J. C. Monnier
    • 1
  • R. Winand
    • 1
  • M. Stanislas
    • 1
  1. 1.IMFL-ONERALilleFrance

Personalised recommendations