Skip to main content
Log in

Relaxation of the lead-deficient sulfide surface layer on oxidized galena

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The surface oxidation of galena in air and in aqueous media has been investigated using electron spectroscopy and linear potential sweep voltammetry to elucidate the incongruent oxidation indicated by previous X-ray photoelectron spectroscopic studies. It has been confirmed that the initial oxidation reaction involves the removal of lead atoms from the sulfide lattice to generate a metal-deficient surface layer. It has been shown that, when the mineral is removed from the oxidizing environment, the composition of this layer relaxes slowly back towards that of the bulk mineral as a result of lead atoms diffusing from the bulk to the surface to fill metal vacancies in the sulfide lattice. The relaxation accounts for the absence of a shifted component in sulfur electron spectra from galena exposed to air or basic solutions in equilibrium with air. Correlation of the potential dependence of self-induced flotation and the extent of surface sulfur excess determined electrochemically indicates that a metal-deficiency equivalent to about half a monolayer of excess sulfur is necessary for significant flotation to be effected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Sutherland and I. W. Wark, ‘Principles of Flotation’, Aust. Inst. Min. Metall., Melbourne, Australia (1955).

    Google Scholar 

  2. W. J. Trahar, in ‘Principles of Mineral Flotation, The Wark Symposium’ (edited by M. H. Jones and J. T. Woodcock), Aust. Inst. Min. Metall., Melbourne, Australia (1984), pp. 117–135.

    Google Scholar 

  3. R. Woods, Chemistry in Australia 58 (1991) 392.

    Google Scholar 

  4. A. N. Buckley and R. Woods, in ‘Proceedings of the International Symposium on Electrochemistry in Mineral and Metal Processing’ (edited by P. E. Richardson, S. Srinivasan and R. Woods), The Electrochemical Society, Pennington, NJ (1984) PV 8410, pp. 286–302.

    Google Scholar 

  5. A. N. Buckley, I. C. Hamilton and R. Woods, in ‘Developments in Mineral Processing’, Vol. 6, ‘Flotation of Sulphide Minerals’ (edited by K. S. E. Forssberg), Elsevier, Amsterdam (1985), pp. 41–60.

    Google Scholar 

  6. P. J. Guy and W. J. Trahar, Int. J. Miner. Process. 12 (1984) 15.

    Google Scholar 

  7. A. N. Buckley and R. Woods, Appl. Surf. Sci. 17 (1984) 401.

    Google Scholar 

  8. A. N. Buckley and G. W. Walker, in ‘Proc. XVI Int. Miner. Process. Congress’ (edited by K. S. E. Forssberg), Elsevier, Amsterdam (1988), pp. 589–599.

    Google Scholar 

  9. A. N. Buckley and K. W. Riley, Surf. Interface Anal. 17 (1991) 655.

    Google Scholar 

  10. A. N. Buckley, I. M. Kravets, A. V. Shchukarev and R. Woods, J. Appl. Electrochem. 24 (1994) 513.

    Google Scholar 

  11. A. N. Buckley and R. Woods, Aust. J. Chem. 37 (1984) 2403.

    Google Scholar 

  12. Idem, Appl. Surf. Sci. 20 (1985) 472.

    Google Scholar 

  13. Idem, ibid. 22/23 (1985) 280.

    Google Scholar 

  14. Idem, Surf. Interface Anal. 17 (1991) 675.

    Google Scholar 

  15. D. J. Vaughan and J. R. Craig, ‘Mineral Chemistry of Metal Sulfides’, Cambridge University, Cambridge, UK (1978).

    Google Scholar 

  16. T. Biegler, D. A. J. Rand and R. Woods, J. Electroanal. Chem. 60 (1975) 151.

    Google Scholar 

  17. R. Woods, J. Phys. Chem. 75 (1971) 354.

    Google Scholar 

  18. L. R. Pederson, J. Electron Spectrosc. 28 (1982) 203.

    Google Scholar 

  19. J. M. Thomas and M. J. Tricker, J. Chem. Sac. Faraday II 71 (1975) 329.

    Google Scholar 

  20. K. Laajalehto, R. St. C. Smart, J. Ralston and E. Suoninen, Appl. Surf. Sci. 64 (1993) 29.

    Google Scholar 

  21. M. Pourbaix, ‘Atlas D'Equilibres Electrochimiques’, Gauthier-Villars, Paris (1963).

    Google Scholar 

  22. J. R. Gardner and R. Woods, J. Electroanal. Chem. 100 (1979) 447.

    Google Scholar 

  23. D. S. Zingg and D. M. Hercules, J. Phys. Chem. 82 (1978) 1992.

    Google Scholar 

  24. H. T. Minden, ibid. 23 (1955) 1948.

    Google Scholar 

  25. G. D. Senior and W. J. Trahar, Int. J. Miner. Process. 33 (1991) 321.

    Google Scholar 

  26. Yu. I. Ravich, B. A. Efimova and I. A. Smirnov, ‘Semiconducting Lead Chalcogenides’, Plenum, New York (1970).

    Google Scholar 

  27. M. Sato, Econ. Geol. 55 (1960) 1202.

    Google Scholar 

  28. E. Peters, in ‘Trends in Electrochemistry’ (edited by J. O'M. Bockris, D. A. J. Rand and B. J. Welch), Plenum, New York (1977), pp. 267–290.

    Google Scholar 

  29. M. Kobayashi and H. Kametani, Hydromet. 22 (1989) 141.

    Google Scholar 

  30. P. E. Richardson, R.-H. Yoon, R. Woods and A. N. Buckley, Int. J. Miner. Process. 41 (1994) 77.

    Google Scholar 

  31. E. Peters, in ‘Proceedings of the International Symposium on Electrochemistry in Mineral and Metal Processing” (edited by P. E. Richardson, S. Srinivasan and R. Woods), The Electrochemical Society, Pennington, NJ (1984), PV 84–10, pp. 343–61.

    Google Scholar 

  32. R. Tolun and J. A. Kitchener, Trans. IMM 73 (1964) C313.

    Google Scholar 

  33. J. Bloem, Philips Res. Rep. 11 (1956) 273.

    Google Scholar 

  34. D. F. A. Koch and R. J. McIntyre, J. Electroanal. Chem. 71 (1976) 285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, A.N., Woods, R. Relaxation of the lead-deficient sulfide surface layer on oxidized galena. J Appl Electrochem 26, 899–907 (1996). https://doi.org/10.1007/BF00242041

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00242041

Keywords

Navigation