Skip to main content

Electrochemical studies of methane activation

Reviews in Applied Electrochemistry No 42

Abstract

The direct conversion of methane into useful and more versatile chemicals is a subject that has attracted the interest of numerous researchers. Methane is a refractory molecule and therefore very difficult to convert to upgraded products. In the last thirty years, the electrochemical studies of methane activation have contributed significantly by adding various alternative solutions to this very challenging research problem. In the present communication, the most important findings of low, moderate and high temperature electrochemical studies are reviewed. Since methane activation is easier at elevated temperatures, solid electrolyte cells have been used more extensively. Most of these high-temperature works focused on the production of either synthesis gas or of C2 compounds. A third vital alternative is the development of the internally reformed methane fuel cell. Results are discussed and compared with those of conventional catalytic processes.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    E. E. Wolf, ‘Methane conversion by oxidative processes’, Van Norstrand Reinhold, New York (1992).

    Google Scholar 

  2. [2]

    D. Eng and M. Stoukides, Catal. Rev.-Sci. Eng. 33 (1991) 3759

    CAS  PubMed  Google Scholar 

  3. [3]

    Y. Amenomiya, V. I. Birss, M. Goledzinowski, J. Galuszka, and A. Sanger, Cat. Rev.-Sci. Eng. 32 (3), (1990) 163.

    Google Scholar 

  4. [4]

    Kirk-Othmer, ‘Encyclopedia of chemical technology’, vol. 12, 3rd edn, Wiley, New York (1978) pp. 901–909.

    Google Scholar 

  5. [5]

    C. N. Satterfield, ‘Heterogeneous catalysis in industrial practice’, 2nd edn, McGraw-Hill, New York (1991).

    Google Scholar 

  6. [6]

    J. Rostrup-Nielsen, in ‘Catalysis: science and technology’, vol. 5, (edited by J. R. Anderson, M. Boudart), Springer-Verlag, New York, (1984) p. 1.

  7. [7]

    D. A. Hickman and L. D. Schmidt, Science 259 (1993) 343.

    Google Scholar 

  8. [8]

    J. S. Lee and S. T. Oyama, Catal. Rev.-Sci. Eng. 30 (1988) 249.

    Google Scholar 

  9. [9]

    R. Pitchai and K. Klier, 28 (1986) 13.

    Google Scholar 

  10. [10]

    J. R. Anderson, Appl. Catal. 47 (1989) 177.

    Google Scholar 

  11. [11]

    J. Lunsford, Catal. Today 6 (1990) 235.

    Google Scholar 

  12. [12]

    J. M. Fox, Catal. Rev.-Sci. Eng. 35 (1993) 169.

    Google Scholar 

  13. [13]

    J. P. Van Hook, 21 (1980) 1.

    Google Scholar 

  14. [14]

    E. J. Cairns, Adv. Electrochem. Eng. 8 Wiley, New York (1971).

    Google Scholar 

  15. [15]

    G. Saracco and V. Specchia, Cat. Rev.-Sci. Eng. 36, (2), (1994) 305.

    Google Scholar 

  16. [16]

    R. Schonfelder, Ber. Ges. Kohlentech. (1923) 247.

  17. [17]

    D. Lance and E. G. Elworthy, French Patent 352 687 (1905).

  18. [18]

    L. W. Niedrach, J. Electrochem. Soc. 109 (1962) 1092.

    Google Scholar 

  19. [19]

    R. Jasinski, J. Huff, S. Tomter and L. Swette, Ber. Bunsenges. Phys. Chem. 68 (1964) 400.

    Google Scholar 

  20. [20]

    W. T. Grubb and C. J. Michalske, Nature 201 (1964) 287.

    Google Scholar 

  21. [21]

    L. W. Niedrach, J. Electrochem. Soc. 111 (1964) 1309.

    Google Scholar 

  22. [22]

    H. Binder, A. Kohling and G. Sandstede, Rev. Energie Prim. 1 (1965) 48.

    Google Scholar 

  23. [23]

    L. W. Niedrach, S. Gilman and I. Weinstock, J. Electrochem. Soc. 112 (1965) 1161.

    Google Scholar 

  24. [24]

    H. Binder, A. Kohling, H. Krupp, K. Richter and G. Sandstede, 112 (1965) 355.

    Google Scholar 

  25. [25]

    H. Binder, A. Kohling and G. Sandstede, Adv. Energy Conv. 6 (1966) 135.

    Google Scholar 

  26. [26]

    E. J. Cairns, J. Electrochem. Soc. 113 (1966) 1200.

    Google Scholar 

  27. [27]

    L. W. Niedrach, 113 (1966) 645.

    Google Scholar 

  28. [28]

    L. W. Niedrach and M. Tochner, 114 (1967) 17.

    Google Scholar 

  29. [29]

    H. A. Liebhafsky and W. T. Grubb, Amer. Chem. Soc. Div. Fuel Chem. Prepr. 11 (1967) 134.

    Google Scholar 

  30. [30]

    A. H. Taylor and S. B. Brummer, J. Phys. Chem. 72 (1968) 2856.

    Google Scholar 

  31. [31]

    M. Bonnemay, G. Bronoel, D. Doniat and J. PT. Peasand, Amer. Chem. Soc. Div. Fuel Chem. Prepr. 13 (1969) 221.

    Google Scholar 

  32. [32]

    A. H. Taylor and S. B. Brummer, J. Phys. Chem. 73 (1969) 2397.

    Google Scholar 

  33. [33]

    S. B. Brummer and M. J. Turner, Proceedings of the 23rd Annual Power Sources Conference, (1969) 26.

  34. [34]

    J. R. Ruft, in ‘From electrocatalysis to fuel cells’ (edited by G. Sandstede), University of Washington, Seattle 1972) p. 3.

  35. [35]

    H. P. Fritz, J. Electroanal. Chem. 54 (1974) 181.

    Google Scholar 

  36. [36]

    S. B. Brummer, M. J. Turner, S. D. Kirkland and H. Feng, Proc. Symp. Electrocatal., San Fransisco, (1974) p. 128.

  37. [37]

    E. A. Kolyadko, M. V. Menyailova and V.I. Podlovchenko, Electrokhimiya 13 (1977) 273.

    Google Scholar 

  38. [38]

    S. Y. Hsieh and K. M. Chen, J. Electrochem. Soc. 124 (1977) 1171.

    Google Scholar 

  39. [39]

    P. Sidheswaran, J. Electrochem. Soc. India 28 (1979) 271.

    Google Scholar 

  40. [40]

    A. A. Adams and R. T. Foley, J. Electrochem. Soc. 126 (1979) 775.

    Google Scholar 

  41. [41]

    G. W. Walker and R. T. Foley, 128 (1981) 1502.

    Google Scholar 

  42. [42]

    M. G. Sustersic, R. Gordova, W. E. Triaca and A. J. Arvia, 127 (1980) 1242.

    Google Scholar 

  43. [43]

    A. M. Castro Luna, A. Delgado and A. J. Arvia, An Asoc, Quim. Argent. 69 (1981) 301.

    Google Scholar 

  44. [44]

    P.-L. Fabre, J. Denvych and B. Tremillon, Tetrahedron 38 (1982) 2697.

    Google Scholar 

  45. [45]

    T. Otogawa, S. Zaromb and J. R. Stetter, J. Electrochem. Soc. 132 (1985) 2951.

    Google Scholar 

  46. [46]

    J. Cassidy, S. B. Khoo, S. Pons and M. Fleischman, J. Phys. Chem. 89 (1985) 3933.

    Google Scholar 

  47. [47]

    K. Ogura and K. Takamagari, Nature 319 (1986) 308.

    Google Scholar 

  48. [48]

    Y. Harima and R. Morrison, J. Electroanal. Chem. 220 (1987) 173.

    Google Scholar 

  49. [49]

    D. P. Summers and K. W. Frese Jr., Extended Abstracts of the Spring Meeting of the Electrochemical Society, 88-1 (1988) p. 17.

  50. [50]

    K. Ogura, C. T. Migita and Y. Ito, J. Electrochem. Soc. 137 (1990) 500.

    Google Scholar 

  51. [51]

    R. L. Cook and A. F. Sammells, 137 (1990) 2007.

    Google Scholar 

  52. [52]

    A. Parmaliana, F. Frusteri, F. Arena and N. Giordano, Cat. Lett. 12 (1992) 353.

    Google Scholar 

  53. [53]

    K. W. Frese Jr., Langmuir 7 (1991) 13.

    Google Scholar 

  54. [54]

    A. Kawashima, K. Takamura, T. Shimada, H. Habazaki, K. Asami and K. Hashimoto, Extended Abstracts of the Spring Meeting of the Electrochemical Society, Honolulu, 93–1 (1993) p. 252.

    Google Scholar 

  55. [55]

    C. Hirai, M. Matsumura and A. Saaki,, p. 1516.

    Google Scholar 

  56. [56]

    Y. Miyake, K. Harima and T. Nakajima,, p. 1507.

    Google Scholar 

  57. [57]

    J. Ohtsuki, T. Seki, S. Takeuchi, A. Kusunoki, A. Sasaki, H. Urushibata and T. Murahashi,, p. 1506.

    Google Scholar 

  58. [58]

    3rd Int'l Symp. on Carbonate Fuel Cell Technology, ibid., p. 1500–1559.

  59. [59

    T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.

    Google Scholar 

  60. [60]

    C. G. Vayenas, Solid State Ionics 30 (1988) 1521.

    Google Scholar 

  61. [61]

    M. Stoukides, Ind. Eng. Chem. Res. 27 (1988) 1745.

    Google Scholar 

  62. [62]

    P. J. Gellings, H. J. A. Koopmans and A. J. Burggraaf, Appl. Catal. 39 (1988) 1.

    Google Scholar 

  63. [63]

    S. Pancharatnam, R. A. Huggins, D. M. Mason, J. Electrochem. Soc. 122 (1975) 869.

    Google Scholar 

  64. [64]

    T. M. Gür and R. A. Huggins, 126 (1979) 1067.

    Google Scholar 

  65. [65]

    C. G. Vayenas, S. Bebelis, I. V. Yentekakis and H.-G. Lintz, Catal. Today 11 (1992) 303.

    Google Scholar 

  66. [66]

    C. G. Vayenas, S. Bebelis and S. Ladas. Nature 343 (1990) 625.

    Google Scholar 

  67. [67]

    C. G. Vayenas, S. Bebelis and S. Neophytides, J. Phys. Chem. 92 (1988) 5083.

    Google Scholar 

  68. [68]

    H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3/4 (1981) 359.

    Google Scholar 

  69. [69]

    B. Cales and J. F. Baumard, J. Electrochem. Soc. 131 (1984) 2407.

    Google Scholar 

  70. [70]

    H. Iwahara, H. Uchida, and K. Morimoto, 137 (1990) 462.

    Google Scholar 

  71. [71]

    J. Weissbart and R. Ruka, 109 (1962) 723.

    Google Scholar 

  72. [72]

    D. W. White, Rev. Energ. Primaire 2 (1966) 10.

    Google Scholar 

  73. [73]

    W. E. Tragert, R. L. Fullman, and R. E. Carter, US Patent 3138490 (1964).

  74. [74]

    Y. L. Sandler, J. Electrochem. Soc. 118 (1971) 1378.

    Google Scholar 

  75. [75]

    D. M. Haaland, 127 (1980) 796.

    Google Scholar 

  76. [76]

    R. A. Goffe and D. M. Mason, J. Electrochem. Soc. 128 (1981) 447.

    Google Scholar 

  77. [77]

    S. Seimanides and M. Stoukides, J. Catal. 88 (1984) 490.

    Google Scholar 

  78. [78]

    S. Seimandides, PhD. thesis, Tufts University, Medford, MA, (1987).

    Google Scholar 

  79. [79]

    K. Otsuka, S. Yokoyama and A. Morikawa, Bull. Chem. Soc. Japan 57 (1984) 3286.

    Google Scholar 

  80. [80]

    B. C. Nguyen,. T. A. Lin and D. M. Mason, J. Electrochem. Soc. 133 (1986) 1807.

    Google Scholar 

  81. [81]

    S. Seimanides and M. Stoukides, J. Catal. 98 (1986) 540.

    Google Scholar 

  82. [82]

    H. J. Christ and H. G. Sockel, High Temp. Technol. 5 (1987) 123.

    Google Scholar 

  83. [83]

    N. Kiratzis and M. Stoukides, J. Electrochem. Soc. 134 (1987) 1925.

    Google Scholar 

  84. [84]

    , J. Catal. 132 (1991) 257.

    Google Scholar 

  85. [85]

    K. Mori, JP Patent, 62-139889 (1987).

  86. [86]

    Idem, JP Patent, 62-128901 (1987).

  87. [87]

    D. Eng and M. Stoukides, Proceedings of the 9th International Congress on Catalysis, 2 (1988) p. 974.

    Google Scholar 

  88. [88]

    B. C. H. Steele, P. H. Middleton and R. A. Rudkin, Proceedings of the 7th International Conference on Solid State Ionics, Hakone, Japan, 5–11 Nov. (1989).

  89. [89]

    B. C. H. Steele, I. Kelly, H. Middleton and R. Rudkin, Solid State Ionics 28/30 (1988) 1547.

    Google Scholar 

  90. [90]

    D. Eng and M. Stoukides, J. Catal. 130 (1991) 306.

    Google Scholar 

  91. [91]

    M. Mogensen and J. J. Bentzen, Proceedings of the 1st International Symposium on Solid Oxide Fuel Cells, 89/11 The Electrochemical Society (1989) pp. 99–110.

  92. [92]

    A. L. Lee, R. F. Zabransky and W. J. Huber, Ind. Eng. Chem. Res. 29 (1990) 766.

    Google Scholar 

  93. [93]

    C. G. Vayenas, S. Bebelis, P. Tsiakaras, Y. Yentekakis and H. Karasali, Plat. Metals Rev. 34, (3) (1990) 122.

    Google Scholar 

  94. [94]

    E. McKenna, A. Othoneos, N. Kiratzis and M. Stoukides, Ind. Eng. Chem. Res. 32 (1993) 1904.

    Google Scholar 

  95. [95]

    H. Alqahtany, D. Eng and M. Stoukides, J. Electrochem. Soc. 140 (1993) 1677.

    Google Scholar 

  96. [96]

    I. V. Yentekakis, S. G. Neophytides, A. C. Kaloyannis and C. G. Vayenas, Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, (edited by S. Singhal and H. Iwahara), The Electrochemical Society, Pennington, NJ., (1993) p. 904.

  97. [97]

    P. H. Middleton, H. J. Steiner, G. M. Christie, R. Baker, I. S. Metcalfe and B. C. H. Steele, ibid., p. 542.

  98. [98]

    O. A. Mar'ina, V. A. Sobyanin, V. D. Belyaev and V. N. Parmon, Catal. Today 13 (1992) 567.

    Google Scholar 

  99. [99]

    O. A. Mar'ina, V. A. Sobyanin and V. D. Belyaev, Mater. Sci. Eng. B13 (1992) 153.

    Google Scholar 

  100. [100]

    V. D. Belyaev, V. A. Sobyanin, A. K. Denim, A. S. Lipilin and V. E. Zapesotskii, Mendeleev Commun. (1991) 53.

  101. [101]

    H. C. Hsiao and J. R. Selman, Proceedings, [97], p. (1993) 895.

    Google Scholar 

  102. [102]

    H. Alqahtany, D. Eng, and M. Stoukides, Energy and Fuels 7 (1993) 495.

    Google Scholar 

  103. [103]

    T. J. Mazanec, T. L. Cable and J. G. Frye Jr., Solid State Ionics 53/56 (1992) 111.

    Google Scholar 

  104. [104]

    D. Eng and M. Stoukides, Catal. Lett. 9 (1991) 47.

    Google Scholar 

  105. [105]

    M. N. Mahmood and N. Bonanos, Solid State Ionics 53/56 (1992) 142.

    Google Scholar 

  106. [106]

    P. H. Chiang, D. Eng, H. Alqahtany and M. Stoukides, Solid State Ionics 53/56 (1992) 135.

    Google Scholar 

  107. [107]

    M. Stoukides, D. Eng, P. H. Chiang and H. Alqahtany, ‘Studies in surface science and catalysis’, Vol. 75(C), Elsevier, Amsterdam, (1993) p. 2131.

    Google Scholar 

  108. [108]

    S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner and B. C. H. Steele, Solid State Ionics 53/56 (1992) 111.

    Google Scholar 

  109. [109]

    K. Ledjeff, T. Rohrbach and G. Schaumberg, Proceedings of the 2nd International Symposium on Solid Oxide Fuel Cells (edited by F. Grosz, P. Zegers, S. C. Singhal and O. Yamamoto), Commission of the European Communities, Luxembourg (1991) p. 323.

  110. [110]

    A. Gubner and H. Landes, Proceedings of the 1st European Solid Oxide Fuel Cell Forum, Lucerne, Switzerland, 1 (1994) p. 237.

    Google Scholar 

  111. [111]

    V. Antonucci, Proceedings,, Lucerne, Switzerland, 1 (1994) p. 183.

    Google Scholar 

  112. [112]

    T. Horita, N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, Proceedings,, (1993) 1, p. 227. Yamamoto editors., Commission of the European Communities, Luxembourg (1991) p. 323.

    Google Scholar 

  113. [113]

    A. Kungolos, P. Tsiakaras and M. Stoukides, Proceedings of the 1st Euroconference on Solid State Ionics, Zakynthos, Greece (1994).

  114. [114]

    S. Bebelis, S. Neophytides and C. G. Vayenas, Proceedings,, (1993) 1, p. 207.

    Google Scholar 

  115. [115]

    L. Zanibelli, C. Flego, C. Perego and C. Rizzo, Proceedings,, (1994) 1, p. 207.

    Google Scholar 

  116. [116]

    T. Norby, P. A. Osborg, O. Dyrlie, R. Hildrum, M. Seiersten and R. Glenne, Proceedings,, (1994) 1 p. 217.

    Google Scholar 

  117. [117]

    A. L. Tonkovich, R. W. Carr and R. Aris, Science 262 (1993) 221.

    Google Scholar 

  118. [118]

    Y. Jiang, I. V. Yentekakis and C. G. Vayenas, 264 (1994) 1563.

    Google Scholar 

  119. [119]

    G. E. Keller and M. M. Bhasin, J. Catal. 73 (1982) 9.

    Google Scholar 

  120. [120]

    W. Hinsen and M. Baerns, Chem. Ztg. 107 (1983) 223.

    Google Scholar 

  121. [121]

    T. Ito and J. H. Lunsford, Nature 314 (1985) 721.

    Google Scholar 

  122. [122]

    G. S. Lane and E. E. Wolf, J. Catal. 113 (1988) 144.

    Google Scholar 

  123. [123]

    V. D. Belyaev, V. A. Sobyanin, O. A. Marina, Izv. Sibirsk. Oidel. Akad. Nauk SSSR Ser. Khim. Nauk. (1), (1990) 27.

    Google Scholar 

  124. [124]

    H. Nagamoto, K. Hayashi and H. Inoue, J. Catal 126 (1990) 671.

    Google Scholar 

  125. [125]

    K. Otsuka, S. Yokoyama and A. Morikawa, Chem. Lett. (1985) 319.

  126. [126]

    V. D. Belyaev, O. V. Bazhan, V. A. Sobyanin, and V. N. Parmon, in ‘New developments in selective oxidation’, (edited by C. Centi and F. Trifiró), Elsevier, Amsterdam (1990) p. 469.

  127. [127]

    S. Seimanides and M. Stoukides, J. Electrochem. Soc. 133 (1986) 1535.

    Google Scholar 

  128. [128]

    K. Otsuka and A. Morikawa, JP Patent 61-30688 (1986).

  129. [129]

    K. Otsuka, K. Suga, and I. Yamanaka, Catal. Today 6 (1990) 587.

    Google Scholar 

  130. [130]

    N. U. Pujare and A. F. Sammells, J. Electrochem. Soc. 135 (1988) 2544.

    Google Scholar 

  131. [131]

    T. Mazanec, US Patent 4802958 (1989).

  132. [132]

    T. Mazanec, US Patent 4793904 (1988).

  133. [133]

    K. Otsuka, K. Suga, and I. Yamanaka, Catal. Lett. 1 (1988) 423.

    Google Scholar 

  134. [134]

    Idem, Chem. Lett. (1988) 317.

  135. [135]

    E. A. Hazbun, US Patent 4791079 (1988).

  136. [136]

    Idem, US Patent 4827071 (1989).

  137. [137]

    H. Iwahara, H. Uchida, K. Morimoto, S. Hosogi, J. Appl. Electrochem. 19 (1989) 448.

    Google Scholar 

  138. [138]

    P. H. Chiang, D. Eng, and M. Stoukides, J. Electrochem. Soc. 138 (1991) L11.

    Google Scholar 

  139. [139]

    , D. Eng, and M. Stoukides, J. Catal. 139 (1993) 683.

    Google Scholar 

  140. [140]

    , Solid State Ionics 61 (1993) 99.

    Article  CAS  Google Scholar 

  141. [141]

    , 67 (1994) 917.

    Google Scholar 

  142. [142]

    S. Hamakawa, T. Hibino and H. Iwahara, J. Electrochem. Soc. 140 (1993) 459.

    Google Scholar 

  143. [143]

    J. H. White, E. A. Needham, R. L. Cook and A. F. Sammels, Solid State Ionics 53–56 (1992) 149.

    Google Scholar 

  144. [144]

    L. S. Woldman and V. D. Sokolovskii, Catal. Lett. 8 (1991) 61.

    Google Scholar 

  145. [145]

    P. Tsiakaras and C. G. Vayenas, J. Catal. 140 (1993) 53.

    Google Scholar 

  146. [146]

    , 144 (1993) 333.

    Google Scholar 

  147. [147]

    S. Bebelis, I. V. Yentekakis, S. G. Neophytides, P. Tsiakaras, H. Karasali and C. G. Vayenas, Proceedings, [97], p. 926.

    Google Scholar 

  148. [148]

    C. G. Vayenas, S. Bebelis, P. Tsiakaras, Y. Yentekakis and H. Karasali, Plat. Metals Rev. 34(3) (1990) 122.

    Google Scholar 

  149. [149]

    H. Iwahara, in ‘VII International Conference on Solid State Proton Conductors, SSPC VII’, Schwabisch Ground, 29 Aug.–1 Sept. (1994), paper DI.

  150. [150]

    M. Stoukides, P. H. Chiang, D. Eng and P. Tsiakaras, International Conference, ibid., (1994), paper D2.

  151. [151]

    R. W. Spillman, R. M. Spotnitz and J. T. Lundquist Jr., CHEMTECH 14 (1984), 176.

    Google Scholar 

  152. [152]

    C. G. Vayenas, S. I. Bebelis and C. C. Kyriazis, 21 (1991) 422.

    Google Scholar 

  153. [153]

    21 (1991) 500.

    Google Scholar 

  154. [154]

    D. Eng, P. H. Chiang and M. Stoukides, Technical Report to National Renewable Energy Laboratory of DOE, Contract XAR-3-13237-01-107811 (1994).

  155. [155]

    M. S. Peters and K. D. Timmerhaus, ‘Plant design and economics for chemical engineers’ 3rd edn., McGraw-Hill: San Francisco (1980).

    Google Scholar 

  156. [156]

    A. Hammon, Adv. Electrochem. Sci. & Engng 2 (1992) 87.

    PubMed  Google Scholar 

  157. [157]

    H. Iwahara, Proceedings, 2 (1992) [109] p. 5.

    Google Scholar 

  158. [158]

    D. T. Hooie, Proceedings, 2 (1992) [97] p. 3.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stoukides, M. Electrochemical studies of methane activation. J Appl Electrochem 25, 899–912 (1995). https://doi.org/10.1007/BF00241584

Download citation

Keywords

  • Methane
  • Fuel Cell
  • Solid Electrolyte
  • Electrochemical Study
  • Challenging Research