, Volume 191, Issue 1, pp 79–85 | Cite as

Characterization of the plasma-membrane-bound nitrate reductase in Chlorella saccharophila (Krüger) Nadson

  • Christine Stöhr
  • Rudolf Tischner
  • Michael R. Ward


The plasma membranes of Chlorella saccharophila (Krüger) Nadson cells contained a membrane-bound nitrate reductase. This form of nitrate reductase was purified and characterized. Several differences from the soluble form of nitrate reductase were apparent, the most important being: (i) the greater hydrophobicity, as proven using Triton X-114 phase separation, hydrophobic interaction chromatography and stimulation by phosphilipids; (ii) the differences in the native molecular mass compared with Chlorella sorokiniana (Krüger) Nadson; and (iii) the different polypeptide pattern obtained by two-dimensional polyacrylamide gel electrophoresis. Only the plasma-membrane-bound nitrate reductase could be found in both inside-out and right-side-out plasma-membrane vesicles.

Key words

Chlorella Nitrate reductase (plasma-membrane bound) Plasma membrane 



hydrophobic interaction chromatography


isoelectric focusing


methyl viologen


nitrate reductase


plasma membrane


plasma-membrane-bound nitrate reductase


sodium dodecyl sulfatepolyacrylamide gel electrophoresis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askerlund, P., Laurent, P., Nakagawa, H., Kader, J.-C. (1991) NADH-ferricyanide reductase of leaf plasma membranes. Plant Physiol. 95, 6–13Google Scholar
  2. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 278–293Google Scholar
  3. Corzo, A., Plasa, R., Ullrich, WR. (1991) Extracellular ferricyanide reduction and nitrate reductase activity in the green alga Monoraphidium braunii. Plant Sci. 75, 221–228Google Scholar
  4. Funkhouser, E.A., Shen, T.-C., Ackermann, R. (1980) Synthesis of nitrate reductase in Chlorella. Plant Physiol. 65, 939–943Google Scholar
  5. Hageman, R.H., Fiesher, D. (1960) Nitrate reductase activity in corn seedlings as affected by light and nitrate content of the media. Plant Physiol. 35, 700–708Google Scholar
  6. Heukeshoven, J., Dernick, R. (1988) Improved silver staining procedure for fast staining in PhastSystem development unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis 9, 28–32Google Scholar
  7. Hoarau, J., Nasto, A., Lavergne, D., Flipo, V., Hirel, B. (1991) Nitrate reductase activity changes during a culture cycle of tobacco cells: the participation of a membrane-bound form enzyme. Plant Sci. 79, 193–204Google Scholar
  8. Knobloch, O. (1987) Isolierung und Characterisierung von Mutanten der Grünalge Chlorella sorokiniana mit Defekten in der Nitratassimilation. Ph.D. Thesis University Göttingen, FRG, pp. 135–136Google Scholar
  9. Knobloch, O., Tischner, R. (1989) Characterization of nitrate reductase deficient mutants of Chlorella sorokiniana. Plant Physiol. 89, 786–791Google Scholar
  10. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–686PubMedGoogle Scholar
  11. Larsson, C., Kjellbom, P., Widell, S., Lundborg, T. (1984) Sidedness of plant plasma membrane vesicles purified by partitioning in aqueous two-phase-systems. FEBS. Lett. 171, 271–276Google Scholar
  12. O'Farrell, P.H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021Google Scholar
  13. Palmgren, G., Askerlund, P., Fredrikson, K., Widell, S., Sommarin, M., Larsson, C. (1990) Scaled inside-out and right-side-out plasma membrane vesicles. Optimal conditions for formation and separation. Plant Physiol. 92, 871–880Google Scholar
  14. Pryde, J.G. (1986) Triton X-114: a detergent that has come in from the cold. TIBS 11, 160–163Google Scholar
  15. Pryde, J.G., Phillips, J.H. (1986) Fractionation of membrane proteins by temperature-induced phase separation in Triton X-114. Biochem. J. 233, 525–533Google Scholar
  16. Sandstrom, R.P., DeBoer, A.H., Lomax, T.L., Cleland, R.E. (1987) Latancy of plasma membrane H+ -ATPase in vesicles isolated by aqueous phase partitioning. Plant Physiol. 85, 693–698Google Scholar
  17. Solomonson, L.P., Barber, M.J. (1986) Structure-function relationships of assimilatory nitrate reductase. In: Advanced course on inorganic nitrogen metabolism, Jarandilla, SpainGoogle Scholar
  18. Solomonson, L.P., Lorimer, G.H., Hall, R.L., Borchers, R., Leggett-Bailey, J. (1975) Reduced NADH-nitrate reductase of Chlorella vulgaris. Purification, prosthetic groups and molecular properties. J. Biol. Chem. 250, 4120–4127Google Scholar
  19. Tischner, R. (1976) Zur Induktion der Nitrat- und Nitrit-reduktase in vollsynchronen Chlorella Kulturen. Planta 132, 285–290Google Scholar
  20. Tischner, R., Hillmer, S., Robinson, D.G. (1987) Physiological properties and cytological features of protoplasts prepared from Chlorella saccharophila. Protoplasma 139, 153–159Google Scholar
  21. Tischner, R., Ward, M.R., Huffaker, R.C. (1989) Evidence for a plasma-membrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana. Planta 178, 19–24Google Scholar
  22. Ward, M.R., Tischner, R., Huffaker, R.C. (1988) Inhibition of nitrate transport by anti-nitrate reductase IgG fragments and the identification of plasma membrane associated nitrate reductase in roots of barley seedlings. Plant Physiol. 88, 1141–1145Google Scholar
  23. Weselake, R.J., Jacobs, H.K. (1983) Separation of cytoplasmic and mitochondrial isoenzymes of creatine kinase by hydrophobic interaction chromatography. Clin. Chim. Acta 134, 357–361Google Scholar
  24. Yamaya, T., Solomonson, L.P., Oaks, A. (1980) Action of corn and rice-inactivating proteins on a purified nitrate reductase from Chlorella vulgaris. Plant Physiol. 65, 146–150Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Christine Stöhr
    • 1
  • Rudolf Tischner
    • 1
  • Michael R. Ward
    • 2
  1. 1.Pflanzenphysiologisches Institut der Universität GöttingenGöttingenGermany
  2. 2.Department of Molecular BiologyMassachusetts General HospitalBostonUSA

Personalised recommendations