Skip to main content
Log in

Effects of accessory optic system lesions on vestibulo-ocular and optokinetic reflexes in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Horizontal vestibulo-ocular reflex (VOR) and optokinetic nystagmus (OKN) were studied before and after lesions within the accessory optic system (AOS) in the cat. Post-lesion retinal input to the AOS was evaluated using the autoradiographic technique. Unilateral lesion of the lateral terminal nucleus of the AOS (LTN) and the resulting retinal deafferentation of the medial terminal nucleus of the AOS (MTN) induced a spontaneous nystagmus in the dark whose slow phase was directed ipsilaterally to the lesion. VOR gain was reduced for both directions with a maximal decrease for stimulation directed ipsilaterally to the lesion. OKN gain obtained for both directions of binocular stimulation was decreased, mainly when the stimulus was directed contralaterally to the lesion. After two postoperative weeks, spontaneous nystagmus disappeared and the VOR symmetry recovered simultaneously. A symmetrical OKN was only observed after one month. In spite of the known visual selectivity for vertical direction in LTN-MTN cells, the results of this study support a functional involvement of these nuclei in horizontal VOR and OKN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley KA, Baker RG, Simpson JI (1975) Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the cat. Brain Res 98: 585–589

    Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the vestibulocerebellum onto the vestibular nuclei in the cat. Arch Ital Biol 105: 441–479

    Google Scholar 

  • Baker R, Highstein SM (1978) Vestibular projections to medial rectus subdivision of oculomotor nucleus. J Neurophysiol 41: 1629–1646

    Google Scholar 

  • Baker R, Precht W, Llinás R (1972) Cerebellar modulatory action on the vestibulo-trochlear pathway in the cat. Exp Brain Res 15: 364–385

    Google Scholar 

  • Baleydier C, Magnin M (1979) Afferent and efferent connections of the parabigeminal nucleus in cat revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 161: 187–198

    Google Scholar 

  • Benedetti F, Montarolo PG, Strata P (1982) Suppression of the olivocerebellar activity decreases the excitability of the vestibulospinal neurons. Neuroscience Suppl 7: S22

    Google Scholar 

  • Blanks RH, Giolli RA, Pham SV (1982a) Projections of the medial terminal nucleus of the accessory optic system upon pretectal nuclei in the pigmented rat. Exp Brain Res 48: 228–237

    Google Scholar 

  • Blanks RH, Giolli RA, Torigoe Y (1982 b) Descending projections of the medial terminal nucleus of the accessory optic system: a light autoradiographic study in rat and rabbit. Soc Neurosci Abstr 8: 204

    Google Scholar 

  • Brauth SE, Karten HJ (1977) Direct accessory optic projections to the vestibulo-cerebellum: a possible channel for oculomotor control systems. Exp Brain Res 28: 73–84

    Google Scholar 

  • Brecha N, Karten JH, Hunt SP (1980) Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. J Comp Neurol 189: 615–670

    Google Scholar 

  • Britto LR, Natal CL, Marcondes AM (1981) The accessory optic system in pigeons: receptive field properties of identified neurons. Brain Res 206: 149–154

    Google Scholar 

  • Burns S, Wallman J (1981) Relation of single unit properties to the oculomotor function of the nucleus of the basal optic root (accessory optic system) in chickens. Exp Brain Res 42: 171–180

    Google Scholar 

  • Cazin L, Magnin M, Lannou J (1982) Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp Brain Res 48: 309–313

    Google Scholar 

  • Courjon JH, Jeannerod M, Ossuzio I, Schmid R (1977) The role of vision in compensation of vestibulo-ocular reflex after hemilabyrinthectomy in the cat. Exp Brain Res 28: 235–248

    Google Scholar 

  • Cowan WM, Gottlieb DI, Hendrickson A, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37: 541–551

    Google Scholar 

  • Feran MT, Grasse KL (1982) Afferent and efferent connections of the accessory optic system in the cat. Soc Neurosci Abstr 8: 204

    Google Scholar 

  • Fite KV, Reiner A, Hunt SP (1979) Optokinetic nystagmus and the accessory optic system of pigeon and turtle. Brain Behav Evol 16: 192–202

    Google Scholar 

  • Flandrin JM, Jeannerod M (1981) Effects of unilateral superior colliculus ablation on oculomotor and vestibulo-ocular responses in the cat. Exp Brain Res 42: 73–80

    Google Scholar 

  • Flandrin JM, Courjon JH, Jeannerod M, Schmid R (1983) Effects of unilateral flocculus lesions on vestibulo-ocular responses in the cat. Neuroscience 8: 809–817

    Google Scholar 

  • Gacek RR (1977) Location of brain stem neurons projecting to the oculomotor nucleus in the cat. Exp Neurol 57: 725–749

    Article  CAS  PubMed  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983a) Optokinetic nystagmus in the pigeon (Columba livia). II Role of the pretectal nucleus of the accessory optic system (AOS). Exp Brain Res 50: 237–247

    Google Scholar 

  • Gioanni H, Villalobos J, Rey J, Dalbera (1983b) Optokinetic nystagmus in the pigeon (Columba livia). III Role of the nucleus ectomamillaris (nEM): Interactions in the accessory optic system (AOS). Exp Brain Res 50: 248–258

    Google Scholar 

  • Grasse KL, Cynader MS (1982a) Electrophysiology of medial terminal nucleus of accessory optic system in the cat. J Neurophysiol 48: 490–504

    Google Scholar 

  • Grasse KL, Cynader MS (1982b) Distribution of direction selectivity in the medial, lateral and dorsal terminal nuclei of the cat accessory optic system. Soc Neurosci Abstr 8: 407

    Google Scholar 

  • Graybiel AM (1978) A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res 145: 365–374

    Google Scholar 

  • Graybiel AM, Hartweig LK (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81: 543–551

    Google Scholar 

  • Hayhow WR (1959) An experimental study of the accessory optic fiber system in the cat. J Comp Neurol 113: 281–314

    Google Scholar 

  • Hill RM, Marg E (1963) Single unit responses of the nucleus of the transpeduncular tract in rabbit to monochromatic light on the retina. J Neurophysiol 26: 249–257

    Google Scholar 

  • Hoddevik GH, Brodal A (1977) The olivocerebellar projection studied with the method of retrograde axonal transport of horseradish peroxidase. V. The projections to the flocculonodular lobe and the paraflocculus in the rabbit. J Comp Neurol 176: 269–280

    Google Scholar 

  • Holcombe V, Hall WC (1981) Course and laminar origin of the tectoparabigeminal pathway. Brain Res 211: 405–411

    Google Scholar 

  • Ito J, Sasa M, Matsuoka I, Takaori S (1982) Afferent projection from reticular nuclei, inferior olive and cerebellum to lateral vestibular nucleus of the cat as demonstrated by horseradish peroxidase. Brain Res 231: 427–432

    Google Scholar 

  • Ito M, Highstein SM, Fukuda S (1970) Cerebellar inhibition of the vestibulo-ocular reflex in rabbit and cat and its blockage by picrotoxin. Brain Res 17: 524–526

    Article  CAS  PubMed  Google Scholar 

  • Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in the intact and cerebellectomized, alert cat. Neuroscience 4: 1599–1613

    Google Scholar 

  • Kimm J, Winfield JA, Hendrickson AE (1979) Visual-vestibular interactions and the role of the flocculus in the vestibuloocular reflex. In Granit R, Pompeiano O (eds) Reflex control of posture and movement. Prog Brain Res 50: 653–665

  • Lazar G (1973) Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5: 443–460

    Google Scholar 

  • Legg CR (1979) Visual discrimination impairments after lesions in zona incerta or lateral terminal nucleus of accessory optic tract. Brain Res 177: 461–478

    Google Scholar 

  • Lin H, Ingram WR (1972) An anterior component of the accessory optic system of the cat, with evidence for the absence of reticuloretinal fibers. Exp Neurol 37: 37–49

    Google Scholar 

  • Maekawa K, Simpson JI (1973) Climbing fiber response evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 36: 649–666

    Google Scholar 

  • Magnin M, Jeannerod M (1973) Fixation non traumatique de la téte chez le chat eveillé. CR Soc Biol 167: 996

    Google Scholar 

  • Magnin M, Courjon JH, Flandrin JM (1983) Possible visual pathways to the cat vestibular nuclei involving the nucleus prepositus hypoglossi. Exp Brain Res 51: 298–303

    Google Scholar 

  • Marburg O (1903) Basale Opticuswurzel und Tractus peduncularies transversus. Arbeit aus dem Neurologischen Institut der Universität Wien. 10, 66–80

    Google Scholar 

  • Meiry JL (1965) The vestibular system and human dynamic space orientation. Sc D Thesis, MIT

  • Mendez-Otero R, Rocha-Miranda C, Perry VM (1980) The organization of the parabigemino-tectal projections in the opossum. Brain Res 198: 183–189

    Google Scholar 

  • Montarolo PG, Palestini M, Strata P (1982) The inhibitory effect of the olivocerebellar input on the cerebellar purkinje cells in the rat. J Physiol (Lond) 332: 187–202

    Google Scholar 

  • Montgomery N, Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: a functional analysis. Brain Behav Evol 21: 137–150

    Google Scholar 

  • Moore RY (1969) Pineal response to light: mediation by the accessory optic system in the monkey. Nature 222: 781–782

    Google Scholar 

  • Morgan B, Frost BJ (1981) Visual response characteristics of neurons in nucleus of basal optic root of pigeons. Exp Brain Res 42: 181–188

    Google Scholar 

  • Pasik P, Pasik T (1973) Extrageniculostriate vision in the monkey. V. Role of the accessory optic system. J Neurophysiol 36: 450–457

    Google Scholar 

  • Pompeiano O, Mergner T, Corvaja N (1978) Commissural perihypoglossal and reticular afferent projections to the vestibular nuclei in the cat. An experimental anatomical study with the method of the retrograde transport of horseradish peroxidase. Arch Ital Biol 116: 130–172

    Google Scholar 

  • Reiner A, Karten JH (1978) A bisynaptic retinocerebellar pathway in the turtle. Brain Res 150: 163–169

    Google Scholar 

  • Sato Y, Kawasaki T, Ikarashi K (1982) Zonal organization of the flocculus purkinje cells projecting to the vestibular nucleus in cats. Brain Res 232: 1–15

    Google Scholar 

  • Sherk H (1979) Connections and visual field mapping in cat's tectoparabigeminal circuit. J Neurophysiol 42: 1656–1668

    Google Scholar 

  • Shute CD, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90: 497–520

    Google Scholar 

  • Simpson JI, Soodak RE, Hess R (1979) The accessory optic system and its relation to the vestibulocerebellum. Prog Brain Res 50: 715–724

    Google Scholar 

  • Takeda T, Maekawa K (1976) The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res 117: 319–325

    Google Scholar 

  • Uchino Y, Hirai N, Suzuki S (1982) Branching pattern and properties of vertical- and horizontal-related excitatory vestibuloocular neurons in the cat. J Neurophysiol 48: 891–903

    Google Scholar 

  • Walley RE (1967) Receptive fields in the accessory optic system of the rabbit. Exp Neurol 17: 27–43

    Google Scholar 

  • Wallmann J, McKenna OC, Burns S, Velez J, Weinstein B (1981) Relation of the accessory optic system and pretectum to optokinetic responses in chickens. In: Fuchs A, Becker W (eds) Progress in oculomotor research. Elsevier, North Holland, pp 435–442

    Google Scholar 

  • Watanabe K, Kawana E (1979) Efferent projections of the parabigeminal nucleus in rats: a horseradish peroxidase (HRP) study. Brain Res 168: 1–11

    Google Scholar 

  • Westheimer G, Blair SM (1974) Unit activity in accessory optic system in alert monkeys. Invest Ophthalmol 13: 533–534

    Google Scholar 

  • Winfield JA, Hendrickson A, Kimm J (1978) Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus. Brain Res 151: 175–182

    Google Scholar 

  • Yamauchi KE, Umetani T, Hamabusa H, Yamadori T (1982) A study of the accessory optic tract of the albino rat by means of silver impregnation and HRP methods. Neurosci Lett Suppl. 9: S126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by C.N.R.S. (ATP N∘ 8115)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clément, G., Magnin, M. Effects of accessory optic system lesions on vestibulo-ocular and optokinetic reflexes in the cat. Exp Brain Res 55, 49–59 (1984). https://doi.org/10.1007/BF00240497

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240497

Key words

Navigation