Skip to main content
Log in

Is cysteine residue important in FITC-sensitive ATP-binding site of P-type ATPases? A commentary to the state of the art

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Treatment of P-type ATPases (from mammalian sources) by fluorescein isothiocyanate (ITC) revealed the ITC label on a lysine residue that was than considered as essential for binding of ATP in the ATP-binding site of these enzymes. On the other hand, experiments with site directed mutagenesis excluded the presence of an essential lysine residue that would be localized in the ATP binding sites of ATPases. Other previous studies, including those of ourselves, indicated that the primary site of isothiocyanate interaction may be the sulflhydryl group of a cysteine residue and this may be essential for binding of ATP. In addition considerable knowledge accumulated since yet also about the differences in stability of reaction product of isothiocyanates with SH- or NH2- groups. Based upon evaluation of the data available up to now, in present paper the following tentative roles for lysine and cysteine residues located in the ATP-binding site of P-type ATPases are proposed: The positively charged micro-domain of the lysine residue may probably attract the negatively charged phosphate moiety of the ATP molecule whereas the cysteine residue may probably be responsible for recognition and binding of ATP by creation of a proton bridge with the amino group in position 6 on the adenosine ring of ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pick U, Bassilian S: Modification of the ATP-binding site of the Ca2+-ATPase from sarcoplasmic reticulum by fluorescein isothiocyanate. FEBS Lett 123: 127–130, 1981

    Google Scholar 

  2. Carilli CT, Farley RA, Perlman DM, Cantley LC: The active site structure of Na+ and K stimulated ATPase. Location of a specific isothiocyanate reactive site. J Biol Chem 257: 5601–5606, 1981

    Google Scholar 

  3. Farley RA, Tran CM, Carilli CT, Hawke D, Shively JE: The amino acid sequence of a fluorescein labeled peptide from the active site of (Na++ K+)-ATPase. J Biol Chem 259: 9532–9535, 1984

    Google Scholar 

  4. Kirley KL, Wallick ET, Lane LK: The amino acid sequence of the fluorescein isothiocyanate reactive site of lamb and rat kidney Na+ and K+-dependent ATPase. Biochim Biophys Res Commun 125: 767–773, 1984

    Google Scholar 

  5. Ohta T, Morohashi M, Kawamura M, Yoshida M: The amino acid sequence of the fluorescein-labeled peptides of electric ray and brime shirm (Na,K)-ATPase. Biochem Biophys Res Commun 130: 221–228, 1985

    Google Scholar 

  6. Mitchinson C, Wilderspin AF, Trinnaman BJ, Green NM: Identification of a labeled peptide after stoichiometric reaction of fluorescein isothiocyanate with Ca2− dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett 146: 87–93, 1982

    Google Scholar 

  7. Filoteo AG, Gorski JP, Penniston JT: The ATP binding site of the erythrocyte membrane calcium pump. Amino acid sequence of the fluorescein isothiocyanate-reactive region. J Biol Chem 262: 6526–6530, 1987

    Google Scholar 

  8. Farley RA, Faller LD: The amino acid sequence of an active site peptide from the proton-potassium ATPase of gastric mucosa. J Biol Chem 260: 3899–3901, 1985

    Google Scholar 

  9. Ziegelhöffer A, Breier A, Džurba A, Vrbjar N: Selective and reversible inhibition of heart sarcolemmal (Na+ + K+)-ATPase by pbromophenylisothiocyanate. Evidence for a sulfhydryl group in the ATP binding site of the enzyme. Gen Physiol Biophys 2: 447–456, 1983

    Google Scholar 

  10. Breier A, Ziegelhöffer A, Stankovičová T, Dočolomanský P, Gemeiner P, Vrbanová A: Inhibition of (Na/K)-ATPase by electrophilic substances: Functional implications. Mol Cell Biochem 147: 187–192, 1995

    Google Scholar 

  11. Patzelt-Wenczler R, Schoner W: Evidence for two different reactive sulfhydryl groups in the ATP binding sites of (Na+ + K+)-ATPase. Eur J Biochem 114: 79–87, 1981

    Google Scholar 

  12. Schoner W, Sepersu EH, Pauls H, Patzelt-Wenczler R, Kreickman H, Rempeter G: Comparative studies on the ATP-binding sites in Ca2+-ATPase and (Na+ + K)-ATPase by the use of ATP analogues. Z Naturforsch 37c: 692–705, 1982

    Google Scholar 

  13. Drobnica L, Gemeiner P: In: JL Fox, Z. Deyl and A. Blazej (eds). Use of isothiocyanate as ‘reporter’ groups in modification of enzymes. Protein Structure and Evolution. Marcel Dekker Inc, New York, 1976, pp 105–115

    Google Scholar 

  14. Drobnica L, Kristián P, Augustin J: The chemistry of isothiocyanates, In: S. Patai (ed.) The Chemistry of Cyanates and their Thio Derivatives. Part 2. Wiley and Sons, Chichester, 1977, pp 1003–1221

    Google Scholar 

  15. Gemeiner P, Drobnica L: Selective and reversible modification of essential thiol groups of D-glyceraldehyd-3-phosphate dehydrogenase by isothiocyanates. Experientia 35: 857–858, 1979

    Google Scholar 

  16. Wilderspin AF, Green M: The reaction of fluorescein isothiocyanate with thiols: A method for assay of isothiocyanates. Analyt Biochem 132: 449–455, 1983

    Google Scholar 

  17. Swoboda G, Hasselbach W: Reaction of fluorescein isothiocyanate with thiol and amino group of sarcoplasmic ATPases. Z Naturforsch 40c: 863–875, 1985

    Google Scholar 

  18. Gemeiner P, Bíliková Z, Uhrin D, Šoltés L, Mosbach K: ATP derivatives for biorecognition technology: High-performance liquid chromatography and nuclear magnetic resonance spectra. Biotech Appl Biochem 11: 176–183, 1989

    Google Scholar 

  19. Wang K, Farley RA: Lysine 480 is not an essential residue for ATP binding or hydrolysis by Na,K-ATPase. J Biol Chem 267: 3577–3580, 1992

    Google Scholar 

  20. Maruyama K, Mac Lennan DH: Mutation of aspartic acid 351, lysine 352 and lysine 515 alters the calcium transport activity of the calcium ATPase expressed in COS-1 cells. Proc Natl Acad Sci USA 85: 3314–3318, 1988

    Google Scholar 

  21. Breier A, Turi Nagy L, Ziegelhöffer A, Monošiková R, Džurba A: Hypothetical structure of the ATP binding site of (Na+ + K+)-ATPase. Gen Physiol Biophys 8: 283–286, 1989

    Google Scholar 

  22. Yamamoto H, Imamura Y, Tagaya M, Fukui T, Kawakita M: Calcium dependent conformational change of the ATP binding site of calcium transporting ATPase of sarcoplasmic reticulum as revealed by an al teration of target-site specificity of adenosine triphosphate pyridoxal. J Biochem (Tokyo) 106: 1121–1125, 1989

    Google Scholar 

  23. Tamura S, Tagaya M, Madea M, Futai M: Pig gastric (H+ + K+)ATPase. Lys-492 conserved in cation transporting ATPase is modified with pyridoxal 5′-phosphate. J Biol Chem 264: 8580–8584, 1989

    Google Scholar 

  24. Jorgensen PL: Purification of Na+, K+-ATPase: Enzyme sources, preparative problems, and preparation from mammalian kidney, In: S Fleischer and B Fleischer (eds). Methods in Enzymology, Vol 156. Academic Press, London, 1988, pp 29–43

    Google Scholar 

  25. Shull GE, Lingrel JB: Molecular cloning of the rat stomach proton potassium ATPase. J Biol Chem 261: 16788–16791, 1986

    Google Scholar 

  26. Crownson MS, Shull GE: Isolation and characterization of a cDNA encoding the putative distal colon H+, K+-ATPase. Similarity of deduced amino acid sequence to gastric H, K+-ATPase and Na, K+ AT-Pase and mRNA expression in distal colon, kidney and uterus. J Biol Chem 267: 13740–13748, 1992

    Google Scholar 

  27. Shull GE, Schwartz A, Lingrel JB: Amino-acid sequence of the catalytic subunit of the (Na+ + K+)-ATPase deduced from a complementary DNA. Nature 316: 691–695, 1985

    Google Scholar 

  28. Mac Lennan DH, Brandl CJ, Korozak B, Green MN: Aminoacid sequence of a Ca2+-ATPase from rabbit muscle sarcoplasmic reticulum deduced from its complementary DNA sequence. Nature. 316: 696–700, 1985

    Google Scholar 

  29. Inesi G, Kirtley MR: Structural features of cation transport ATPases. J Bioenerg Biomembran 24: 271–283, 1992

    Google Scholar 

  30. Verma AK, Filoteo AG, Stanford DR, Wiebnen ED, Penniston JT, Strehler EE, Fischer R, Heim R, Vogel G, Mathews S, Strehler-Page MA, James P, Vorherr T, Krebs J, Carafoli E: Complete primary structure of a human plasma membrane Ca+ pump. J Biol Chem 263: 41521–4159, 1988

    Google Scholar 

  31. Shull GE, Greeb J: Molecular cloning of the plasma membrane Ca2+ transporting ATPase from rat brain. J Biol Chem 263: 8646–8657, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breier, A., Ziegelhöffer, A., Famulsky, K. et al. Is cysteine residue important in FITC-sensitive ATP-binding site of P-type ATPases? A commentary to the state of the art. Mol Cell Biochem 160, 89–93 (1996). https://doi.org/10.1007/BF00240036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240036

Key words

Navigation