Skip to main content
Log in

Protein acetylation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The first reports of the presence of acetyl groups in proteins were concerned with N-terminal acetylation and in 1958 an acetyl peptide was found in a natural protein. The presence of acetyl groups in histories was reported in 1963. N-terminal acetylation can occur in the absence of protein biosynthesis in cell-free systems, although the N-terminus became acetylated while the chain was still on the ribosome. After in vivo administration of 3H-acetate, a displacement of the radioactivity with time towards the higher molecular weight regions is evident. The acetyl groups are bound in the peptidyl moiety of the peptidyl-tRNA. N-terminal acetylation of the H4 histories occurs on the nascent chains in the cytoplasm, whereas internal lysine residues are progressively acetylated after the histone enters the nucleus. The H1 histories containing only the amino terminal acetyl group are the most stable metabolically.

Acetylation of chromosomal proteins has been correlated with gene activation and, also, gene inactivation has been correlated with histone deacetylation. Both processes occur rapidly and twice as fast in nuclei from rat hepatoma cells as in nuclei from fetal and adult livers. The arginine-rich histone fraction appears to play a major role in the regulation of RNA synthesis and the arginine-rich histone-specific acetyl transferases may have a major function in the transcription of the genome.

Acetyl transferases have been characterized from: pigeon liver acetone fractions, cytosol of uteri from immature rats, rat liver nuclei and cytoplasm, calf liver nuclei and calf thymus cytoplasm, all with different specificities. An acetyl transferase bound to ribosomes active in the acetylation of histories can be solubilized by washing the ribosomes with 0.5 M KCI. Acetylation of ribosomal proteins occurs at a time when the initiation complex is being formed. The acetyl transferase activity of rat liver cytoplasm can be resolved into two components by gel filtration. One component appears to be responsible for acetylation of the epsilon amino group of internal lysine residues in nascent chains. The other component has been investigated to a greater extent and constitutes an RNA-containing proteolipid complex termed complex A which contains enzymes responsible for amino acid activation and the acetylation of polysomal proteins. Electron microscopic studies have revealed a duplex structure with a central hollow in the big unit. Its RNA consists largely of tRNA. The eight lipids, contained therein with the exception of two, were glycolipids. Activities for the enzymatic activation of twelve amino acids: L-Arg, L-Asp, L-Glu, L-GluNH2, Gly, L-Leu, L-Met, L-Phe, L-Pro, L-Ser, L-Thr and L-Tyr may be located on the inside of complex A, while lysine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narita, K., 1958. Biochim. Biophys. Acta, 28: 184–191.

    Google Scholar 

  2. Harris, J. I., 1959. Biochem. J., 71: 449–459.

    Google Scholar 

  3. Narita, K., 1961. Biochem. Biophys. Res. Comm., 5:160–164.

    Google Scholar 

  4. Marshall, R. D. & Neuberger, A., 1961. Biochem. J., 78: 31–32.

    Google Scholar 

  5. Schroeder, W. A., Cua, J. I., Matsuda, G. & Fenninger, W. D., 1962. Biochim. Biophys. Acta, 63: 532–534.

    Google Scholar 

  6. Satake, K., Sasakawa, S., Muruyama, T., 1963. J. Biochem. (Tokyo), 87: 258–263.

    Google Scholar 

  7. Phillips, D. M. P., 1963. Biochem. J., 87: 258–263.

    Google Scholar 

  8. Ruiz-Carillo, A., Waugh, L. J., Allfrey, V. G., 1975. Science, 190: 117–128.

    Google Scholar 

  9. Berlowitz, L., Palotta, D., 1972. Exp. Cell. Res., 71: 45–48.

    Google Scholar 

  10. Gorovsky, M. A., Pleger, G. L., Keevert, J. B., Johman, C. A., 1973. J. Cell Biol., 57: 773–781.

    Google Scholar 

  11. Allfrey, V. G., 1970. Federation Proceedings, 29: 1447–1460.

    Google Scholar 

  12. Byvoet, P., 1968. Biochim. Biophys. Acta, 160: 217–227.

    Google Scholar 

  13. Liew, C. C., Suria, D., Gornall, A. G., 1973. Endocrinology, 93:1025–1034.

    Google Scholar 

  14. Libby, P. R., 1973. Biochem. J., 134: 907–912.

    Google Scholar 

  15. Jungmann, R. A., Schweppe, J. S., 1972. J. Biol. Chem., 247: 5535–5542.

    Google Scholar 

  16. Libby, P. R., 1972. Biochem. J., 130: 663–669.

    Google Scholar 

  17. Liew, C. C., Gornall, A. G., 1973. J. Biol. Chem., 248: 977–983.

    Google Scholar 

  18. Pestana, A., Sudilovsky, O., Pitot, H. C., 1971. FEBS Lett., 19:83–86.

    Google Scholar 

  19. Gallwitz, D. & Sures, I., 1972. Biochim. Biophys. Acta, 263: 315–328.

    Google Scholar 

  20. Racey, L. A. & Byvoet, P., 1971. Exp. Cell Res., 64:366–370.

    Google Scholar 

  21. Liew, C. C., Haslett, G. W. & Allfrey, V. G., 1970. Nature, 226:414–417.

    Google Scholar 

  22. Pestana, A. & Pitot, H. C., 1974. Nature, 247: 200–202.

    Google Scholar 

  23. Ciba Foundation Symposium 28, 1975. The Structure and Function of Chromatin. Elsevier, Amsterdam.

  24. Phillips, D. M. P., Johns, E. W., 1965. Biochem. J., 94: 127–130.

    Google Scholar 

  25. Phillips, D. M. P., 1968. Biochem. J., 107: 135–138.

    Google Scholar 

  26. Gershey, E. L., Vidali, G., Allfrey, V. G., 1968. J. Biol. Chem., 243: 5018–5022.

    Google Scholar 

  27. DeLange, R. J., Fambrough, D. M., Smith, E. L., Bonner, J., 1969. J. Biol. Chem., 244: 5669–5679.

    Google Scholar 

  28. DeLange, R. J., Fambrough, D. M., Smith, E. L., Bonner, J., 1969. J. Biol. Chem., 244: 319–334.

    Google Scholar 

  29. Dixon, G. H., Candido, E. P. M., Honda, B. M., Louie, A. J., MacLeod, A. R. & Sung, M. T., 1975. In: The Structure and Function of Chromatin, Ciba Foundation Symposium, 28: pp. 229–258, Elsevier/Excerpta Medica/North-Holland, Amsterdam.

    Google Scholar 

  30. Paik, W. K., Pearson, D., Lee, H. W. & Kim, S., 1970. Biochim. Biophys. Acta, 213: 513–522.

    Google Scholar 

  31. Narita, K., 1959. J. Am. Chem. Soc., 81: 1751.

    Google Scholar 

  32. Perlmann, G. E., 1966. J. Biol. Chem., 241: 153–157.

    Google Scholar 

  33. Nohara, H., Takahashi, T., Ogata, K., 1966. Biochim. Biophys. Acta, 127: 282–284.

    Google Scholar 

  34. Halleck, M. S. & Gurley, L. R., 1981. Experimental Cell Research, 132: 201–213.

    Google Scholar 

  35. Allfrey, V. G., Faulkner, R. & Mirsky, A. E., 1964. Proc. N. A. S., 51: 786–794.

    Google Scholar 

  36. Allfrey, V. G., Mirsky, A. E., 1962. Proc. N. A. S., 48: 1590–1596.

    Google Scholar 

  37. Allfrey, V. G., Littau, V. C., Mirsky, A. E., 1963. Proc. N. A. S., 49: 414–421.

    Google Scholar 

  38. Pogo, B. G. T., Pogo, A. O., Allfrey, V. G., Mirsky, A. E., 1966. Proc. N. A. S., 55: 805–812.

    Google Scholar 

  39. Pogo, B. G. T., Pogo, A. O., Allfrey, V. G., Mirsky, A. E., 1968. Proc. N. A. S., 59: 1337–1344.

    Google Scholar 

  40. Levy-Wilson, B., Gjerseth, R. A. & McCarthy, B. J., 1977. Biochim. Biophys. Acta, 475: 168–175.

    Google Scholar 

  41. Poupko, J. M., Kostellow, A. B. & Morrill, G. A., 1977. Differentiation, 8: 167–174.

    Google Scholar 

  42. Waugh, L., Ruiz-Carillo, A., Allfrey, V. G., 1972. Arch. Biochem. Biophys., 150: 44–56.

    Google Scholar 

  43. Wang, L. J., Littau, V. C., Allfrey, V. G., 1974. J. Biol. Chem., 249: 7358–5368.

    Google Scholar 

  44. O'Meara, A. R. & Pochron, S. F., 1979. Biochim. Biophys. Acta, 586: 391–401.

    Google Scholar 

  45. Das, R. & Kanungo, M. S., 1979. Biochem. Biophys. Res. Comm., 90: 708–714.

    Google Scholar 

  46. Adler, A. J., Fasman, G. D., 1974. J. Biol. Chem., 249: 2911–2914.

    Google Scholar 

  47. Sheperd, G. R., Noland, B. J., Hardin, J. M., 1971. Biochem. Biophys. Acta, 228: 544–549.

    Google Scholar 

  48. Garcea, R. L. & Alberts, B. M., 1980. J. Biol. Chem., 255: 11454–11463.

    Google Scholar 

  49. Cousens, L. S., Gallwitz, D. & Alberts, B. M., 1979. J. Biol. Chem., 254: 1716–1723.

    Google Scholar 

  50. Lilley, D. M. I., Berendt, A. R., 1979. Biochem. Biophys. Res. Commun., 90: 917–924.

    Google Scholar 

  51. Nohara, H., Takahaski, T., Ogata, K., 1968. Biochim. Biophys. Acta, 154: 529–539.

    Google Scholar 

  52. Chou, T. C., Lipman, F., 1952. J. Biol. Chem., 196: 89–103.

    Google Scholar 

  53. Libby, P. R., 1968. Biochem. Biophys. Res. Comm., 31: 59–65.

    Google Scholar 

  54. Gallwitz, D., 1968. Biochem. Biophys. Res. Comm., 32: 117–121.

    Google Scholar 

  55. Gallwitz, D., 1970. Biochem. Biophys. Res. Comm., 40: 236–242.

    Google Scholar 

  56. Horiuchi, K., Fujimoto, D. & Fukushima, M., 1978. J. Biochem., 84: 1202–1207.

    Google Scholar 

  57. Libby, P. R., 1978. J. Biol. Chem., 253: 233–237.

    Google Scholar 

  58. Böhm, J., Schleger, E.-J., Krippers, R., 1980. Eur. J. Biochem., 112: 353–362.

    Google Scholar 

  59. Bondy, S. C., Roberts, S., Morelos, B. S., 1970. Biochem. J., 119:665–672.

    Google Scholar 

  60. Hindley, J., 1963. Biochem. Biophys. Res. Comm., 12: 175–179.

    Google Scholar 

  61. Sluyser, M., 1966. J. Mol. Biol., 19: 591–595.

    Google Scholar 

  62. Sung, T. M., Dixon, G. H., 1970. Proc. N. A. S., 67: 1616–1623.

    Google Scholar 

  63. Horiuchi, K., Fujimoto, D., 1972. J. Biochem. (Tokyo) 72: 433–438.

    Google Scholar 

  64. Belikoff, E., Wong, L.-J. & Alberts, B. M., 1980. J. Biol. Chem., 255: 11448–11453.

    Google Scholar 

  65. Dixon, G. H., 1972. Acta Endocrinol., 5: 130–154.

    Google Scholar 

  66. Jungmann, R. A., Schweppe, J. S. & Lestina, F. A., 1970. J. Biol. Chem., 245: 4321–4326.

    Google Scholar 

  67. Yukawa, O., Kashihara, H., 1973. Developmental Biology, 33:477–481.

    Google Scholar 

  68. Paik, W. K., Nokumson, S., Kim, S., 1977. Adv. Exp. Med. Biol., 92: 205–232.

    Google Scholar 

  69. Wilhelm, J. A., McCarty, K. S., 1970. Cancer Research, 30: 418–425.

    Google Scholar 

  70. Pogo, B. G. T., Allfrey, V. G., Mirsky, A. E., 1967. J. Cell. Biol., 35: 477–482.

    Google Scholar 

  71. Inoue, A. & Fujimoto, D., 1970. Biochim. Biophys. Acta, 220:307–316.

    Google Scholar 

  72. Kaneta, H. & Fujimoto, D., 1974. J. Biochem., 76: 905–907.

    Google Scholar 

  73. Boffa, L. C., Vidali, G., Mann, R. S. & Allfrey, V. G., 1978. J. Biol. Chem., 253: 3364–3366.

    Google Scholar 

  74. Sheperd, G. R., Noland, B. J., Hardin, J. M., 1972. Exptl. Cell Res., 75: 397–400.

    Google Scholar 

  75. Horiuchi, K., Fujimoto, D., Fukushima, M., Kanai, K., 1981. Cancer Research, 41: 1488–1491.

    Google Scholar 

  76. Liew, C. C., Yip, C. C., 1974. Proc. N. A. S., 71: 2988–2991.

    Google Scholar 

  77. Jackson, R., Hunter, T., 1970. Nature, 277: 672–676.

    Google Scholar 

  78. Lin, S. Y., Mosteller, R. D., Hardesty, B., 1966. J. Mol. Biol., 21: 51–69.

    Google Scholar 

  79. Strous, G. J. A. M., Westreenen, H. V., Bloemendal, H., 1973. Eur. J. Biochem., 79–85.

  80. Pestana, A., Pitot, H. C., 1975. Biochemistry, 14:1397–1403.

    Google Scholar 

  81. Pestana, A., Pitot, H. C., 1975. Biochemistry, 14: 1404–1412.

    Google Scholar 

  82. Hardy, H. S., Kurland, C. G., Voynov, P. & Mora, G., 1969. Biochemistry, 8: 2897–2905.

    Google Scholar 

  83. Liew, C. C., Gornall, A. G., 1973. Biochem. Soc. Trans., 1: 994–995.

    Google Scholar 

  84. Blobel, G., 1971. Proc. N. A. S., 68: 1881–1885.

    Google Scholar 

  85. Drysdale, J., Munro, H. N., 1965. Biochem. J., 95: 851–858.

    Google Scholar 

  86. Saxholm, H. J. K., Pitot, H. C., 1979. Biochim. Biophys. Acta, 562: 386–399.

    Google Scholar 

  87. Cioli, D., Lennox, E. S., 1973. Biochemistry, 12:3203–3210.

    Google Scholar 

  88. Traugh, J. A., Sharp, S. B., 1977. J. Biol. Chem., 252: 3738–3744.

    Google Scholar 

  89. Jonas, R., Huth, W., 1978. Biochem. Biophys. Acta, 527: 379–390.

    Google Scholar 

  90. Marchis-Mouren, G., Lipmann, F., 1965. Proc. N. A. S., 53: 1147–1154.

    Google Scholar 

  91. Pearlman, R., Bloch, K., 1963. Proc. N. A. S., 50: 533–537.

    Google Scholar 

  92. Narita, K., Sato, N., Ogata, K., 1965. J. Biochem. (Tokyo), 57: 176–183.

    Google Scholar 

  93. Warner, J. R., Pene, M. G., 1966. Biochim. Biophys. Acta, 129: 359–368.

    Google Scholar 

  94. Strous, G. J. A. M., Berns, A. J. M., Bloemendal, H., 1974. Biochem. Biophys. Res. Comm., 58: 876–884.

    Google Scholar 

  95. Bandyopadhyay, A. K., Deutscher, M. P., 1971. J. Mol. Biol., 60: 113–122.

    Google Scholar 

  96. Vennegoor, C., Bloemendal, H., 1972. Eur. J. Biochem., 26: 462–473.

    Google Scholar 

  97. Legocki, A. B., Redfield, B., Liu, C. K., Weissbach, H., 1974. Proc. N. A. S., 71: 2179–2182.

    Google Scholar 

  98. Tarrago, A., Allende, J. E., Redfield, B., Weissbach, H., 1973. Arch. Biochem. Biophys., 159: 353–361.

    Google Scholar 

  99. Paik, W. K., Pearson, D., Lee, W. H. & Kim, S., 1970. Biochim. Biophys. Acta, 213: 513–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Norwegian Cancer Society Research Fellow.

International Fellow of the National Institutes of Health (TW01627).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxholm, H.J.K., Pestana, A., O'Connor, L. et al. Protein acetylation. Mol Cell Biochem 46, 129–153 (1982). https://doi.org/10.1007/BF00239663

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239663

Keywords

Navigation