Skip to main content
Log in

Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries

  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose: To investigate the neointimal response to poly(organo)phosphazene- and amphiphilic polyurethane-coated, oversized, stainless steel stents implanted in porcine peripheral arteries.

Methods: Nonarticulated, stainless steel, slotted-tube stents were coated with 1) a biodegradable poly(organo)phosphazene with aminoacid ester side groups and 2) a biostable polyurethane prepared from an amphiphilic polyether, diphenyl methane-4,4'-diisocyanate and butane diol as chain extender. The stents were deployed in porcine peripheral arteries using an oversized balloon.

Results: The neointimal response to amphiphilic polyurethane-coated stents was similar to the uncoated metallic stents. Poly(organo)phosphazene-coated stents, however, induced a severe histiolymphocytic and fibromuscular reaction resembling a foreign body reaction.

Conclusions: Amphiphilic polyurethane is very promising as a biocompatible stent coating. Poly(organo)phosphazene, however, appears unsuitable for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dotter C (1969) Transluminally placed coilspring endoarterial tube grafts. Long-term patency in canine popliteal artery Invest Radiol 4:327–332

    Google Scholar 

  2. Bucx JJ, DeScheerder IK, Beatt K, van denBrand M, Suryapranata H, de Feyter PJ, Serruys PW (1991) The importance of adequate anticoagulation to prevent early thrombosis after stenting of stenosed venous bypass grafts Am Heart J 121(5):1389–1396

    Google Scholar 

  3. deFeyter PJ, DeScheerder IK, van denBrand M, Laarman GJ, Suryapranata H, Serruys PW (1990) Emergency stenting for refractory acute coronary artery occlusion during coronary angioplasty. Am J Cardiol 66:1147–1150

    Google Scholar 

  4. DeScheerder IK, Strauss BH, deFeyter PJ, Beatt KJ, Baur LH, Wijns W, Heyndrix GR, Suryapranata H, van denBrand M, Buis B, Serruys PW (1992) Stenting in venous bypass grafts: A new treatment modality for patients who are poor candidates for reintervention. Am Heart J 123(4):1046–1054

    Google Scholar 

  5. Strauss BH, Serruys PW, DeScheerder IK, Tijssen JG, Bertrand ME, Puel J, Meier B, Kaufmann U, Stauffer JC, Rickards AF, Sigwart U (1991) Relative risk analysis of angiographic predictors of restenosis within the coronary Wallstent. Circulation 84:1636–1643

    Google Scholar 

  6. Fishmann D, Savage M, Leon M, Schatz R, Baim D, Penn I, Detre K, Heuser R, Ricci D, Fish D, Rahe R, Gedhardt S, Goldberg S (1994) Acute and late angiographic results of the stent restenosis study (STRESS). J Am Coll Cardiol 23:60A(suppl I)

  7. Leon MB, Fishmann D, Schatz R, Bain D, Penn I, Nobiyoshi M, Colombo A, Cleman MW, Almond D, Moses J, Savage M, Goldberg S, Detre K (1994) Analysis of early and late clinical events from the stent restenosis study (STRESS). J Am Coll Cardiol 23:26A(suppl I)

  8. Crommen J, Vandorpe J, Schacht E (1993) Degradable polyphosphazenes for biomedical applications. J Controlled Release 24:167–180

    Google Scholar 

  9. Barth K, Eicker B, Bittner U, Marhoff P (1989) The improvement of vessel quantification with image processing equipment for high resolution digital angiography. In: Lemke HV (ed) Computer-assisted radiology. Springer-Verlag, Berlin, pp 220–225

    Google Scholar 

  10. Desmet W, Willems JL, Vrolix M, vanLierde J, Byttebier G, Piessens J (1993) Intra- and interobserver variability of a fast online quantitative coronary angiographic system. Int J Card Imaging 9:249–256

    Google Scholar 

  11. Schwartz RS, Murphy JG, Edwards WD, Holmes DR (1992) Bioabsorbable, drug-eluting, intracoronary stents: Design and future applications. In: Sigwart U, Frank GI (eds): Coronary stents. Springer-Verlag, Heidelberg, pp 135–154

    Google Scholar 

  12. Crommen JHL, Schacht EH, Mense EHG (1992) Biodegradable polymers. Synthesis of hydrolysis-sensitive poly(organo)-phosphazenes. Biomaterials 13:511–520

    Google Scholar 

  13. Crommen JHL, Schacht EH, Mense EHG (1992) Biodegradable polymers. Degradation characteristics of hydrolysis-sensitive poly(organo)phosphazenes. Biomaterials 13:601–611

    Google Scholar 

  14. Boretos JH, Cooper SL (1967) Segmented polyurethane-A new elastomer for biomedical applications. Science 158:1481–1487

    Google Scholar 

  15. Ito Y, Imanski Y (1989) Blood compatibility of polyurethanes. CRC Crit Rev Biocompact 5:45–104

    Google Scholar 

  16. Karas SP, Gravanis MB, Santoian EC, Robinson KA, Anderberg KA, King SB II (1992) Coronary intimai proliferation after balloon injury and stenting in swine: An animal model of restenosis. J Am Coll Cardiol 20:467–474

    Google Scholar 

  17. Fuster V, Fass DN, Kaye MP, Josa M, Zinmeister A, Bowie E (1982) Arteriosclerosis in normal and von Willebrand pigs: Long-term prospective study and aortic transplantation study. Circ Res 51:587–593

    Google Scholar 

  18. Weiner BH, Ockene IS, Jarmolych J, Fritz KE, Daoud AS (1985) Comparison of pathologic and angiographic findings in a porcine preparation of atherosclerosis. Circulation 72:1081–1086

    Google Scholar 

  19. Steele PM, Chesebro JH, Stanson AW, Holmes DR Jr, Dewanjee MK, Badimon L, Fuster V (1985) Balloon angioplasty: Natural history of the pathophysiologic response to injury in a pig model. Circ Res 57:105–112

    Google Scholar 

  20. van derGiessen WJ, vanBeusekom HM, vanHouten CD, vanWoerkens LJ, Verdouw PD, Serruys PW (1992) Coronary stenting with polymer-coated and uncoated self-expanding endoprostheses in pigs. Coronary Artery Dis 3(7):631–640

    Google Scholar 

  21. Verdouw PD, Hartog JM (1986) Provocation and suppression of ventricular arrhythmias in domestic swine. In: Stanton HC, Marsmann HJ. Swine in cardiovascular research, vol II. CRC Press, Inc, Boca Raton, FL, pp 121–156

    Google Scholar 

  22. Lincoff AM, Schwartz RS, van derGiessen WJ, vanBeusekom HM, Serruys PW, Holmes DR, Ellis SG, Topol EJ (1992) Biodegradable polymers can evoke a unique inflammatory response when implanted in the coronary artery. Circulation 86(suppl): 186

    Google Scholar 

  23. Murphy JG, Schwartz RS, Edwards WD, Camrud AR, Vlietstra RE, Holmes DR (1992) Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents. Circulation 86:1596–1604

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Scheerder, I.K., Wilczek, K.L., Verbeken, E.V. et al. Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc Intervent Radiol 18, 227–232 (1995). https://doi.org/10.1007/BF00239417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239417

Key words

Navigation