Advertisement

Plant Cell Reports

, Volume 12, Issue 3, pp 175–179 | Cite as

Culture of and fertile plant regeneration from regenerable embryogenic suspension cell-derived protoplasts of wheat (Triticum aestivum L.)

  • Kasem Z. Ahmed
  • Ferenc Sági
Article

Summary

Regenerable embryogenic cell suspensions initiated from immature embryo-derived friable, fast growing, embryogenic calli of GK Ságvári winter wheat (Triticum aestivum L.) served as sources of protoplasts, which were cultured in different liquid or agarose-solidified media. Protocallus formation was best on KM8p (Kao and Michayluk 1975) and GM (Li and Murai 1990) media, and protocallus growth on MS (Murashige and Skoog 1962) callus growing medium. Green shoot/plant regeneration occurred on MS regenerating medium, and rooting on MS or N6M (Mórocz et al. 1990) hormone-free media. Protocalli maintained their morphogenic capacity over 4 months, and with multiple subcultures on half-strength MS regenerating medium, the total number of regenerants could be increased. Approximately 1000 shoots/plants were regenerated and over 500 plants were transplanted in the greenhouse. The majority of them had an abnormal chromosome number and low viability, however, one plant grew to maturity and set seed.

Key words

Cell suspension Protoplast culture Plant regeneration Wheat (Triticum aestivum L.) 

Abbreviations

BAP

6-benzylaminopurine

2,4-D

2,4-dichlorophenoxyacetic acid

ECS

embryogenic cell suspension

GA3

gibberellic acid

GM

General medium

IAA

indole-3-acetic acid

IBA

indole-3-butyric acid

MS

Murashige and Skoog medium

NAA

1-naphthaleneacetic acid

RECS

regenerable embryogenic cell suspension

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang Y-F, Wang WC, Warfield CY, Nguyen HT, Wang JR (1991) Plant Cell Rep 9: 611–614Google Scholar
  2. Dalton SJ (1988) J. Plant Physiol 132: 170–175Google Scholar
  3. Datta SK, Datta K, Potrykus I (1990) Plant Cell Rep 9: 253–256Google Scholar
  4. Djardemaliev ZHK, Karabaev MK, Mukhametkaliev MT, Butenko RG (1992) Fiziologiya Rastenii 39: 135–142Google Scholar
  5. Fujimura T, Sakurai M, Negishi T, Hirose A (1985) Plant Tissue Culture Lett 2: 74–75Google Scholar
  6. Gamborg OL, Wetter (1975) Plant tissue culture methods. Natl Res Council Can, Saskatoon, SaskatchewanGoogle Scholar
  7. Guo G-Q, Xia G-M, Li Z-Y, Chen H-M (1991) Science in China 34: 438–445Google Scholar
  8. Harris R, Wright M, Byrne M, Varnum J, Brightwell B, Schubert K (1988) Plant Cell Rep 7: 337–340Google Scholar
  9. Hayashi Y, Shimamoto K (1988) Plant Cell Rep 7: 414–417Google Scholar
  10. He DG, Yang YM, Scott KJ (1992) Plant Cell Rep 11: 16–19Google Scholar
  11. Jähne A, Lazzeri PA, Lörz H (1991) Plant Cell Rep 10: 1–6Google Scholar
  12. Jenes B, Pauk J (1989) Plant Sci 63: 187–198Google Scholar
  13. Jones MGK (1985) In: Bright SWJ, Jones MGK (eds) Cereal Tissue and Cell Cultures. Nijhoff/Junk Publishers, Dordrecht, pp 204–230Google Scholar
  14. Kao KM, Michayluk MR (1975) Planta (Berl.) 126: 105–110Google Scholar
  15. Karp A, Wu QS, Steele SH, Jones MGK (1987) Theor Appl Genet 74: 140–146Google Scholar
  16. Lazzeri PA, Brettschneider R, Lührs R, Lörz H (1991) Theor Appl Genet 81: 437–444.Google Scholar
  17. Lazzeri PA, Lörz H (1988) Adv Cell Culture 6: 291–325Google Scholar
  18. Lee BT, Murdoch K, Topping J, de Both MTJ, Wu QS, Karp A, Steele S, Symonds C, Kreis M, Jones MGK (1988) Plant Cell, Tissue and Organ Culture 12: 233–226Google Scholar
  19. Li Z, Murai N (1990) Plant Cell Rep 9: 216–220Google Scholar
  20. Li Z-Y, Xia G-M, Chen H-M (1992a) Plant Cell, Tissue and Organ Culture 28: 79–85Google Scholar
  21. Li Z-Y, Xia G-M, Chen H-M, Guo G-O (1992b) J. Plant Physiol 139: 714–718Google Scholar
  22. Lörz H, Göbel E, Brown P (1988) Plant Breeding 100: 1–25Google Scholar
  23. Maddock SR (1987) Plant Cell Rep 6: 23–26Google Scholar
  24. Menczel L, Nagy F, Kiss ZsR, Maliga (1981) Theor Appl Genet 59: 191–195Google Scholar
  25. Mitchell JC, Petolino JF (1991) J Plant Physiol 137: 530–536Google Scholar
  26. Mórocz S, Donn G, Németh J, Dudits D (1990) Theor Appl Genet 80: 721–726Google Scholar
  27. Morrish F, Vasil V, Vasil IK (1987) Adv Genet 24: 431–499Google Scholar
  28. Müller B, Schulze J, Wegner U (1989) Biochem Physiol Pflanzen 185: 123–130Google Scholar
  29. Murashige T, Skoog F (1962) Physiol Plant 15: 473–497Google Scholar
  30. Potrykus I (1989) Trends in Biotechnol 7: 269–273Google Scholar
  31. Potrykus I (1991) Annu Rev Plant Physiol Plant Mol Biol 42: 205–225Google Scholar
  32. Prioli LM, Söndahl MR (1989) Bio/Technol 7: 589–594Google Scholar
  33. Qiao YM, Cattaneo M, Locatelli F, Lupotto E (1992) Plant Cell Rep 11: 262–265Google Scholar
  34. Roest S, Gilissen (1989) Acta Bot Neerl 38: 1–23Google Scholar
  35. Shang XM, Wang WC (1991) Genome 34: 799–809Google Scholar
  36. Shillito RD, Carswell GK, Johnson CM, DiMaio JJ, Harms CT (1989) Bio/Technol 7: 581–587Google Scholar
  37. Vasil IK (1988) Bio/Technol 6: 397–402Google Scholar
  38. Vasil V, Redway F, Vasil IK (1990) Bio/Technol 8: 429–434Google Scholar
  39. Vasil V, Wang D-Y, Vasil IK (1983) Z Pflanzenphysiol 111: 233–239Google Scholar
  40. Wang H-B, Li X, Sun B, Fang R, Wan P, Chen J, Zhu Z, Zhang L, Zhang W, Wei J, Lan J, Sun Y (1988) Genetic Manipulation in Crops Newsletter (Beijing) 4(2):11–16Google Scholar
  41. Wang H-B, Li X-H, Sun Y-R, Chen J, Zhu Z, Fang R, Wang P, Wei J-K (1990) Science in China 33: 294–302Google Scholar
  42. Wang WC, Nguyen HT (1990) Plant Cell Rep 8: 639–642Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Kasem Z. Ahmed
    • 1
  • Ferenc Sági
    • 1
  1. 1.Cereal Research InstituteSzegedHungary

Personalised recommendations