Skip to main content
Log in

Three-dimensional photographic study of cancellous bone in human fourth lumbar vertebral bodies

  • Original Articles
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

In an analysis of the 3D architecture of cancellous bone, two-dimensional techniques are of limited value. A simple technique employing stereophotographs of whole sections of lumbar vertebrate made possible a detailed description of the 3D structure of the normal fourth lumbar vertebral body and its changes with ageing and osteoporosis. Parallax measurements were used to calculate the real lengths of horizontal trabeculae. The bone presented a continuous spectrum of microstructure, from a honeycomb of tubes, to plates and braces and, finally, fragile rods. A distinct pattern was produced in osteoporotic samples by the removal of horizontal and selected vertical trabeculae followed by a thickening of the remaining vertical trabeculae in the peripheral regions. Very long, thin horizontal trabeculae were formed in all three zones (superior, middle and inferior) during this process. The observation of porotic architecture in intact specimens points to the inadequacy of the clinical criterion of the occurrence of a fracture in judging the osteoporotic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Rel Res 215:260–271

    Google Scholar 

  • Amstutz HC, Sissons HA (1969) The structure of the vertebral spongiosa. J Bone Joint Surg 51 B: 540–550

    Google Scholar 

  • Arnold JS (1968) External and trabecular morphologic changes in lumbar vertebrae in aging. In: Whedon GD, Cameron JR (eds) Progress in methods of bone mineral measurement. US Dept. of Health, Education and welfare, Bethesda, MD, pp 352–411

    Google Scholar 

  • Arnold JS (1970) Focal excessive endosteal resorption in aging and senile osteoporosis. In: Barzel US (ed) Osteoporosis. Grune & Stratton, New York, pp 80–100

    Google Scholar 

  • Arnold JS (1973) Amount and quality of trabecular bone in osteoporotic vertebral fractures. Clin Endocrinol Metab 2:221–238

    Google Scholar 

  • Arnold JS, Bartley MH, Tont SA, Jenkin DP (1966) Skeletal changes in aging and disease. Clin Orthop Rel Res 49:17–38

    Google Scholar 

  • Arnoldi CC (1976) Intraosseous hypertension. Clin Orthop Rel Res 115:30–34

    Google Scholar 

  • Arnoldi CC, Linderholm H, Müssbichler H (1972) Venous engorgement and intraosseous hypertension in osteoarthritis of the hip. J Bone Joint Surg 54 B: 409–421

    Google Scholar 

  • Atkinson PJ (1967) Variation in trabecular structure of vertebrae with age. Calcif Tissue Res 1:24–36

    CAS  PubMed  Google Scholar 

  • Batson OV (1956) The vertebral vein system. Am J Roentgenol 78:195–212

    Google Scholar 

  • Bell GH, Dunbar O, Beck JS (1967) Variation in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75–80

    CAS  PubMed  Google Scholar 

  • Bergot C, Preteux F, Laval-Jeantet AM (1987) Quantitative image analysis of thin sagittal and transversal slices from autopsy specimens of L3 vertebrae. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress ApS, Copenhagen, pp 338–340

    Google Scholar 

  • Bergot C, Laval-Jeantet AM, Preteux F, Meunier A (1988) Measurement of quantitative image analysis. Calcif Tissue Res 43:143–149

    Google Scholar 

  • Birkenhäger-Frenkel DH, Courpron P, Hupscher EA, Clermonts E, Coutinho MF, Schmitz PIM, Meunier PJ (1988) Age-related changes in cancellous bone structure. Bone Miner 4:197–216

    CAS  PubMed  Google Scholar 

  • Boyde A, Jayasinghe JAP, Jequier B (1989) Three-dimensional integram images of trabecular bone. Bone 10:12

    Google Scholar 

  • Boyde A, Radcliffe R, Watson TF, Jayasinghe JAP (1990) Continuous motion parallax in the display and analysis of trabecular bone structure. Bone 11:228

    Google Scholar 

  • Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Google Scholar 

  • Compston JE, Mellish RWE, Garrahan NJ (1987) Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8:289–292

    Article  CAS  PubMed  Google Scholar 

  • Cosman F, Schnitzer MB, McCann PD, Parisien MV, Lindsay R (1992) Relationship between quantitative histological measurements and non-invasive measurements of bone mass. Bone 13:237–242

    Google Scholar 

  • Crock HV, Yoshizawa H (1977) The blood supply of the vertebral column and spinal cord in man. Springer, Heidelberg Berlin New York

    Google Scholar 

  • Cummings SR (1987) Epidemiology of hip fractures. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress ApS, Copenhagen, pp 40–44

    Google Scholar 

  • Delling G (1989) Neuere Vorstellungen zur Bau und Struktur der menschlichen Spongiosa — Ergebnisse einer kombinierten zwei- und dreidimensionalen Analyse. Z Gesamte Inn Med 44:536–540

    Google Scholar 

  • Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol 94:275–291

    Google Scholar 

  • Eastell R, Mosekilde L, Hodgson SF, Riggs BL (1990) Proportion of human vertebral body bone that is cancellous. J Bone Miner Res 5:1237–1241

    Google Scholar 

  • Farfan HF (1975) Muscular mechanisms of the lumbar spine and the position of power and efficiency. Orthop Clin North Am 6:135

    Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. Bone 4:3–11

    CAS  PubMed  Google Scholar 

  • Frost HM (1963) Bone remodelling dynamics. Thomas, Springfield, Ill

    Google Scholar 

  • Frost HM (1964) The laws of bone structure. Thomas, Springfield, Ill

    Google Scholar 

  • Frost HM (1973) The spinal osteoporosis. Clin Endocrinol Metab 2:257–275

    Google Scholar 

  • Frost HM (1985) Pathomechanics of osteoporosis. Clin Orthop 200:198–225

    Google Scholar 

  • Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246

    Google Scholar 

  • Garrahan NJ, Mellish RWE, Compston JE (1986) A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142:341–349

    PubMed  Google Scholar 

  • Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1989) Kombinierte zwei- und dreidimensionale Analyse der Wirbelsäule als Grundlage für das Verständnis endokriner Knochenmassenverlust-Syndrome. Quintessenz, Berlin

    Google Scholar 

  • Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor — a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    Article  CAS  PubMed  Google Scholar 

  • Hansson T (1977) The bone mineral content and biomechanical properties of lumbar vertebrae. Monograph, Dept. Orthopaedic Surgery, University of Göteborg, Sweden

    Google Scholar 

  • Heaney RP (1987) Qualitative factors in osteoporotic fracture: the state of the question. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress ApS, Copenhagen, pp 281–287

    Google Scholar 

  • Heaney RP (1989) Osteoporotic fracture space: an hypothesis. Bone Miner 6:1–13

    Google Scholar 

  • Helfet AJ, Grubel Lee DM (1978) Disorders of the lumbar spine. Lippincott, Philadelphia Toronto

    Google Scholar 

  • Jayasinghe JAP, Boyde A (1990) A preliminary study of normal and osteoporbtic trabecular bone using frequency domain analysis. Bone 11:227

    Google Scholar 

  • Jayasinghe JAP, Jones SJ, Boyde A (1993) Scanning electron microscopy of human vertebral trabecular bone surfaces. Virchows Arch [A] 422:25–34

    Google Scholar 

  • Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecular bone architecture and its mechanical properties. Bone 11:411–415

    Google Scholar 

  • Kleerekoper M, Villanueva AR, Staneiu J, Sudhaker Rao D, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    CAS  PubMed  Google Scholar 

  • Kleerekoper M, Feldkamp LA, Goldstein SA, Flynn MJ, Parfitt AM (1987) Cancellous bone architecture and bone strength. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress ApS, Copenhagen, pp 294–300.

    Google Scholar 

  • Lindahl O, Lindgren GH (1962) Grading of osteoporosis in autopsy specimens. Aeta Orthop Scand 32:85–100

    Google Scholar 

  • Macnab I (1977) Backache. Wiliam & Wilkins, Baltimore

    Google Scholar 

  • Martin DB (1966) Stereoscope with optical means of measuring parallax. Int Arch Photogrammetry 16:37–44

    Google Scholar 

  • Matsuo H (1985) Venographic findings on changes in the lumbar anterior internal vertebral vein with regard to age. Nippon Ika Daigaku Zasshi 52:633–641

    Google Scholar 

  • Mosekilde L (1988) Age-related changes in vertebral trabecular bone architecture — assessed by a new method. Bone 9:247–250

    Article  CAS  PubMed  Google Scholar 

  • Mosekilde L (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of loaded structures). Bone Miner 10:13–35

    Article  CAS  PubMed  Google Scholar 

  • Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85

    Google Scholar 

  • Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    CAS  PubMed  Google Scholar 

  • Parfitt AM, Mathews CHE, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationship between surface, volume, and thickness of iliac trabecular bone on aging and in osteoporosis: implications for the microanatomic and cellular mechanism of bone loss. J Clin Invest 72:1396–1409

    CAS  PubMed  Google Scholar 

  • Pesch HJ, Henschke F, Seibold H (1977) Einfluss von Mechanik und Alter auf den Spongiosaumbau in Lendenwirbelkörpern und im Schenkelhals. Virchows Arch A Pathol Anat Histopathol 377:27–42

    Google Scholar 

  • Pødenphant J, Herss Nielsen VA, Riis BJ, Gotfredsen A, Christiansen C (1987) Bone mass, bone structure and vertebral fractures in osteoporotic patients. Bone 8:127–130

    Google Scholar 

  • Pompesius-Kempa M, Hahn M, Vogel M, Delling G (1989) Neue Untersuchungen zur Mikroarchitektur der Spongiosa bei Osteopathien im Vergleich zu altersbedingten Veränderungen. In: Willert HG, Heuck FHW (eds) Neuere Ergebnisse in der Osteologie. Springer, Heidelberg Berlin New York

    Google Scholar 

  • Pugh JW, Rose RM, Radin EL (1973) Elastic and viscoelastic properties of trabecular bone: dependence on structure. J Biomech 6:475–485

    Google Scholar 

  • Ratcliffe JF (1982) An evaluation of the intra-osseous arterial anastomoses in the human vertebral body at different ages. A microarteriographic study. J Anat 134:373–382

    Google Scholar 

  • Ratcliffe JF (1986) Arterial changes in the human vertebral body associated with aging. Spine 11:235–240

    Google Scholar 

  • Riggs BL, Melton LJ (1983) Evidence for two distinct syndromes of involutional osteoporosis. Am J Med 75:899–901

    Google Scholar 

  • Schmorl G, Junghans H (1975) The human spine in health and disease. Grune & Stratton, New York

    Google Scholar 

  • Singh I (1978) The architecture of the cancellous bone. J Anat 127:305–310

    Google Scholar 

  • Twomey L, Taylor J, Furniss B (1983) Age changes in the bone density and structure of the lumbar vertebral column. J Anat 136:15–25

    Google Scholar 

  • Vernon-Roberts B, Pirie CJ (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis 32:406–412

    Google Scholar 

  • Vesterby A (1990) Star volume of marrow space and trabeculae in iliac crest: sampling procedure and correlation to star volume of first lumbar vertebra. Bone 11:149–155

    Google Scholar 

  • Vesterby A, Gundersen HJG, Melsen F (1989) Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10:7–13

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Hahn M, Pompesius-Kempa M, Delling G (1989) Trabecular microarchitecture of the human spine. In: Willert HG, Heuck FHW (eds) Neuere Ergebnisse in der Osteologie. Springer, Heidelberg Berlin New York, pp 449–455

    Google Scholar 

  • Wakamatsu E, Sissons HA (1969) The cancellous bone of the iliac crest. Calcif Tissue Res 4:147–161

    Google Scholar 

  • Whitehouse WJ, Dyson ED, Jackson CK (1971) The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat 108:481–496

    Google Scholar 

  • Williams PL, Warwick R, Dyson M (eds) (1989) Gray's Anatomy, 37th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  • Woolf AD, Dixon ASt.J (1988) Osteoporosis — a clinical guide. Dunitz, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayasinghe, J.A.P., Jones, S.J. & Boyde, A. Three-dimensional photographic study of cancellous bone in human fourth lumbar vertebral bodies. Anat Embryol 189, 259–274 (1994). https://doi.org/10.1007/BF00239013

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00239013

Key words

Navigation