Skip to main content
Log in

Restoration by cyclic AMP of the differentiated phenotype of chondrocytes from de-differentiated cells pretreated with retinoids

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Parathyroid hormone (PTH) increases the cyclic AMP level in rabbit costal chondrocytes in culture. PTH, dibutyryl cyclic AMP (DBcAMP), and 8-bromo cyclic AMP (8-Br cAMP) induce ornithine decarboxylase (ODC) and expression of the differentiated phenotype of chondrocytes in this cell system. On the other hand, retinoids inhibit expression of the differentiated phenotype of chondrocytes. In the present study, the effects of PTH, DBcAMP, and 8-Br cAMP on rabbit costal chondrocytes pretreated with retinoids were examined.

PTH did not increase the cellular cyclic AMP level in de-differentiated cells that had been pretreated with retinyl acetate or retinoic acid for three days, but it did increase the cyclic AMP level four days after removal of retinoids. PTH did not stimulate ODC activity or expression of the differentiated phenotype of chondrocytes in the de-differentiated state. On the other hand, DBcAMP or 8-Br cAMP stimulated expression of the differentiated phenotype of chondrocytes even in de-differentiated cells, as judged by morphological and bistological changes of the cells and increase in glycosaminoglycan synthesis. Cyclic AMP analogues also induced ODC in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chlapowski, F. J., Kelly, L. A. & Butcher, R. W., 1975. Advances in Cyclic Nucleotide Research (Greengard, P. & Robison, G. A. eds.) Vol. 6, Raven Press, New York, pp. 245–338.

  2. Friedman, D. L., 1976. Physiol. Rev. 56: 652–708.

    Google Scholar 

  3. Takigawa, M., Takano, T. & Suzuki, F., 1981. J. Cell. Physiol. 106: 259–268.

    Google Scholar 

  4. Miller, R. P., Husain, M. & Lohin, S., 1979. J. Cell. Physiol. 100: 63–76.

    Google Scholar 

  5. Suzuki, F., Yoneda, T. & Shimomura, Y., 1976. FEBS Lett. 70: 155–158.

    Google Scholar 

  6. Raina, A. & Jänne, J., 1975. Med. Biol. 53: 121–147.

    Google Scholar 

  7. Jänne, J., Pöso, H. & Raina, A., 1978.Biochim. Biophys. Acta 473: 241–293.

    Google Scholar 

  8. Inoue, H., Kato, Y., Takigawa, M., Adachi, K. & Takeda, Y., 1975. J. Biochem. 77: 879–893.

    Google Scholar 

  9. Takigawa, M., Inoue, H., Gohda, E., Asada, A., Takeda, Y. & Mori, Y., 1977. Exp. Mol. Pathol. 27: 183–196.

    Google Scholar 

  10. Daikuhara, Y., Tamada, F., Takigawa, M., Takeda, Y. & Mori, Y., 1979. Gastroenterology 77: 123–132.

    Google Scholar 

  11. Takigawa, M., Ishida, H., Takano, T. & Suzuki, F., 1980. Proc. Natl. Acad. Sci. USA 77: 1481–1485.

    Google Scholar 

  12. Verma, A. K., Rice, H. M., Shapas, B. G. & Boutwell, R. K., 1978. Cancer Res. 38: 793–801.

    Google Scholar 

  13. Takigawa, M., Watanabe, R., Ishida, H., Asada, A. & Suzuki, F., 1979. J. Biochem. 85: 311–314.

    Google Scholar 

  14. Solursh, M. & Meier, S., 1973. Calcif. Tissue Res. 13: 131–142.

    Google Scholar 

  15. Vasan, N. S. & Lash, J. W., 1975. Calcif. Tissue Res. 19: 99–107.

    Google Scholar 

  16. Shapiro, S. S. & Poon, J. P., 1976. Arch. Biochem. Biophys. 174: 74–81.

    Google Scholar 

  17. Hassell, J. R., Pennypacker, J. P. & Lewis, C. A., 1978. Exp. Cell Res. 112: 409–417.

    Google Scholar 

  18. Pennypacker, J. P., Lewis, C. A. & Hassell, J. R., 1978. Arch. Biochem. Biophys. 186: 351–358.

    Google Scholar 

  19. Lewis, C. A., Pratt, R. M., Pennypacker, J. P. & Hassell, J. R., 1978. Develop. Biol. 64: 31–47.

    Google Scholar 

  20. Green, W. T. Jr., 1971. Clin. Orthoped. 75: 248–260.

    Google Scholar 

  21. Honma, M., Satoh, T., Takezawa, J. & Ui, M., 1977. Biochem. Med. 18: 257–273.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  23. Ross, E. & Schatz, G., 1973. Anal. Biochem. 54: 304–306.

    Google Scholar 

  24. Giles, K. W. & Myers, A., 1965. Nature 206: 93.

    Google Scholar 

  25. Shapiro, S. S. & Poon, J. P., 1979. Exp. Cell Res. 119: 349–357.

    Google Scholar 

  26. Jetten, A. M., Jetten, M. E. R., Shapiro, S. S. & Poon, J.P., 1979. Exp. Cell Res. 119: 289–299.

    Google Scholar 

  27. Wolf, G., 1977. Nutrition Rev. 35: 97–99.

    Google Scholar 

  28. De Luca, L. M., 1977. Vitamin Hormone 35: 1–57.

    Google Scholar 

  29. Adamo, S., De Luca, L. M., Silvermann-Jones, C. S. & Yuspa, S. H., 1979. J. Biol. Chem. 254: 3279–3287.

    Google Scholar 

  30. Russell, D. H., Byus, C. V. & Manen, C.-A., 1976. Life Sci. 19: 1297–1306.

    Google Scholar 

  31. Verma, A. K. & Boutwell, R. K., 1977. Cancer Res. 37: 2196–2201.

    Google Scholar 

  32. Haddox, M. K. & Russell, D. H., 1979. Cancer Res. 39: 2476–2480.

    Google Scholar 

  33. Haddox, M. K., Scott, K. F. F. & Russell, D. H., 1979. Cancer Res. 39: 4930–4938.

    Google Scholar 

  34. Dedman, J. R., Brinkley, B. R. & Means, A. R., 1979. Advances in Cyclic Nucleotide Research (Greengard, P. & Robison, G. A., eds.) Vol. 11, Raven Press, New York, pp. 131–174.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takigawa, M., Takano, T. & Suzuki, F. Restoration by cyclic AMP of the differentiated phenotype of chondrocytes from de-differentiated cells pretreated with retinoids. Mol Cell Biochem 42, 145–153 (1982). https://doi.org/10.1007/BF00238508

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238508

Keywords

Navigation