Skip to main content
Log in

Ion transport across the early chick embryo: II. Characterization and pH sensitivity of the transembryonic short-circuit current

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The ectoderm of the one-day chick embryo generates dorsoventrally oriented short-circuit current (I sc) entirely dependent on extracellular sodium.

At the dorsal cell membrane, the I sc was modified reversibly and in a concentration-dependent manner by: amiloride (60% decrease at 1 mm, with 2 apparent IC50s: 0.13 and 48 μm), phlorizin (0.1 mm) or removal of glucose (30% decrease, additive to that of amiloride), SITS (1 mm, 13% decrease). Acidification or alkalinization of the dorsal (but not ventral) superfusate produced, respectively, decrease or increase of I sc with a pH50 of 7.64.

Ba2+ (0.1–1 mm) from either side of the ectoderm decreased the I sc by 30%. Anthracene-9-carboxylic acid, furosemide and inducers of cAMP had no effect on electrophysiological properties of the blastoderm.

The chick ectoderm is therefore a highly polarized epithelium containing, at the dorsal membrane, the high and low affinity amiloride-sensitive Na+ channels, Na+-glucose cotransporter, K+ channels and pH sensitivity, and, at the ventral membrane, the Na+, K+-ATPase and K+ channels. The Na+ transport reacts to pH, but lacks the cAMP regulatory system, well known in many epithelia.

The active Na+ transport drives glucose and fluid into the intraembryonic space, across and around the blastoderm which, in the absence of blood circulation, could secure renewal of extracellular fluid and disposal of wastes and thus maintain the cell homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriel, H., Ksontini, R., Kučera, P. 1993. Influence of the extracellular pH on the active transports in the chick embryo. Experientia 49:A47 (Abstr.)

    Google Scholar 

  • Abriel, H., Nuccitelli, R. 1992. Measurement of the endogenous electric field and transectodermal potential in living chick embryo. Experientia 48:A33 (Abstr.)

    Google Scholar 

  • Alper, S.L. 1991. The band 3-related anion exchanger (AE) gene family. Annu. Rev. Physiol. 53:549–564

    Google Scholar 

  • Aronson, P.S. 1989. The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Annu. Rev. Physiol. 51:419–441

    Google Scholar 

  • Benos, D.J. 1981. Developmental changes in epithelial transport characteristics of preimplantation rabbit blastocysts. J. Physiol. 316:191–202

    Google Scholar 

  • Benos, D.J., Cunningham, S., Baker, R.R., Beason, K.B., Oh, Y., Smith, P.R. 1992. Molecular characteristics of amiloride-sensitive sodium channels. Rev. Physiol. Biochem. Pharmacol. 120:31–113

    Google Scholar 

  • Biggers, J.D., Baltz, J.M., Lechene, C. 1991. Ions and preimplantation development. In: Current Communications in Cell and Molecular Biology 4. Animal Applications of Research in Mammalian Development. R.A. Pedersen, A. McLaren, N.L. First, pp. 121–146. Cold Spring Harbor Laboratory NY

  • Cross, M.H. 1973. Active sodium and chloride transport across the rabbit blastocoele wall. Biol. Reprod. 8:566–575

    Google Scholar 

  • Cross, M.H., Brinster, R.L. 1970. Influence of ions, inhibitors and anoxia on transtrophoblast potential of rabbit blastocyst. Exp. Cell Res. 62:303–309

    Google Scholar 

  • Duffey, M.E., Hainau, B., Ho, S., Bentzel, C.J. 1981. Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294:451–453

    Google Scholar 

  • Elias, S. 1964. The subembryonic liquid in the hen's egg: Formation and biochemistry. Rev. Roum. Embr. Cytol. 1:165–192

    Google Scholar 

  • Elsas, L.J., Longo, N. 1992. Glucose transporters. Annu. Rev. Med. 43:377–393

    Google Scholar 

  • Gillespie, J.I., Greenwell, J.R. 1988. Changes in intracellular pH and pH regulating mechanisms in somitic cells of the early chick embryo: a study using fluorescent pH-sensitive dye. J. Physiology 405:385–395

    Google Scholar 

  • Hall, W.J., O'Donoghue, J.P., O'Regan, M.G., Penny, W.H. 1976. Endogenous prostaglandins, adenosine 3′, 5′-monophosphate and sodium transport across isolated frog skin. J. Physiol. 258:731–753

    Google Scholar 

  • Hamburger, V., Hamilton, H. 1951. A series of normal stages in the development of the chick embryo. J. Morphol 88:49–92

    Google Scholar 

  • Harvey, B.J., Ehrenfeld, J. 1988. Proton passage across cell membranes. pp. 139–164. Wiley, Chichester (Ciba Foundation Symposium 139)

    Google Scholar 

  • Höfer, M. 1981. Transport across biological membranes. pp. 133–145. Pitman, London, Marshfield

    Google Scholar 

  • Howard, E. 1957. Ontogenetic changes in the freezing point and sodium and potassium content of the subgerminal fluid and blood plasma of the chick embryo. J. Comp. Physiol. 50:451–470

    Google Scholar 

  • Hwang, E.-S., Hirayama, B.A., Wright, E.M. 1991. Distribution of the SGLT1 Na+/glucose cotransporter and mRNA along the crypt-villus axis of rabbit small intestine. Biochem. Biophys. Res. Commun. 181:1208–1217

    Google Scholar 

  • Kleyman, T.R., Cragoe, E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21

    Google Scholar 

  • Komazaki, S., Takada, M. 1988. Amiloride-sensitive potential difference across the blastocoelic wall of early embryos of the newt, Cynops pyrrhogaster. Comp. Biochem. Physiol. 91A:129–133

    Google Scholar 

  • Kučera, P., Abriel, H., Katz, U. 1994. Ion transport across the early chick embryo: I. Electrical measurements, ionic fluxes and regional heterogeneity. J. Membrane Biol. 141:149–157

    Google Scholar 

  • Kučera, P., de Ribaupierre, Y. 1989. Extracellular electrical currents in the chick blastoderm. Biol. Bull. 176(S):118–122

    Google Scholar 

  • Kučera, P., Raddatz, E., Baroffio, A. 1984. Oxygen and glucose uptakes in the early chick embryo. In: Respiration and metabolism of embryonic vertebrates. W. Seymour, editor. pp. 299–309. Junk publ., Dordrecht, Boston, London

    Google Scholar 

  • Manejwala, F.M., Cragoe, E.J., Schultz, R.M. 1989. Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 133:210–220

    Google Scholar 

  • Manejwala, F.M., Schultz, R.M. 1989. Blastocoel expansion in the preimplantation mouse embryo: stimulation of sodium uptake by cAMP and possible involvement of cAMP-dependent protein kinase. Dev. Biol. 136:560–563

    Google Scholar 

  • New, D.A.T. 1956. The formation of sub-blastodermic fluid in hen's eggs. J. Embryol. Exp. Morph. 4:221–227

    Google Scholar 

  • Palmer, L.G., Frindt, G. 1987. Effects of cell Ca and pH on Na channels from rat cortical collecting tubule. Am. J. Physiol. 253:F333-F339

    Google Scholar 

  • Powers, R.D., Borland, R.W., Biggers, J.D. 1977. Amiloride-sensitive rheogenic Na+ transport in rabbit blastocyst. Nature 270:603–604

    Google Scholar 

  • Powers, R.D., Tupper, J.T. 1977. Developmental changes in membrane transport and permeability in the early mouse embryo. Dev. Biol. 56:306–315

    Google Scholar 

  • Prod'hom, B., Kučera, P. 1992. Ion channels in the chick embryonic ectoderm. Experientia 48:A33 (Abstr.)

    Google Scholar 

  • Robinson, D.H., Smith, P.R., Benos, D.J. 1990. Hexose transport in preimplantation rabbit blastocysts. J. Reprod. Fert. 89:1–11

    Google Scholar 

  • Robinson, D.H., Bubien, J.K., Smith, P.R., Benos, D.J. 1991. Epithelial sodium conductance in rabbit preimplantation trophectodermal cells. Dev. Biol. 147:313–321

    Google Scholar 

  • Romanoff, A.L. 1967. Biochemistry of the Avian Egg. pp. 295–329. Wiley, New York

    Google Scholar 

  • Smith, M.W. 1970. Active transport in the rabbit blastocyst. Experientia 26:736–738

    Google Scholar 

  • Stein, W.D. 1990. Channels, Carriers, and Pumps: An Introduction to Membrane Transport. pp. 286–305. Academic, San Diego, London

    Google Scholar 

  • Stern, C.D., MacKenzie, D.O. 1983. Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77:73–98

    Google Scholar 

  • Stern, C.D., Manning, S., Gillespie, J.I. 1985. Fluid transport across the epiblast of the chick embryo. J. Embryol. Exp. Morphol. 88:365–384

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110–127

    Google Scholar 

  • Van Driessche, W., Zeiske, W. 1985. Ionic channels in epithelial cell membranes. Physiol. Rev. 65:833–903

    Google Scholar 

  • Wiley, L.M., Obasaju, M.F. 1989. Effects of phlorizin and ouabain on the polarity of mouse 4-cell/16-cell stage blastomere heterokaryons. Dev. Biol. 133:375–384

    Google Scholar 

  • Wiley, L.M., Lever, J.E., Pape, C., Kidder, G. 1991. Antibodies to a renal Na+/glucose cotransport system localize to the apical plasma membrane domain of polar mouse embryo blastomeres. Dev. Biol. 143:149–161

    Google Scholar 

  • Wright, E.M. 1993. The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55:575–589

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Swiss National Research Foundation (grant 3.418-0.86 to P.K.), by the Roche Research Foundation (grant to U.K.), the Fond du 450ème anniversaire de l'Université de Lausanne and the Société Académique Vaudoise (grants to H.A.). We thank C. Bareyre, G. de Torrenté and R. Ksontini for excellent technical assistance and Drs. E. Raddatz, Y. de Ribaupierre and B. Prod'hom for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abriel, H., Katz, U. & Kučera, P. Ion transport across the early chick embryo: II. Characterization and pH sensitivity of the transembryonic short-circuit current. J. Membarin Biol. 141, 159–166 (1994). https://doi.org/10.1007/BF00238249

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238249

Key words

Navigation