Skip to main content
Log in

Ion transport across the early chick embryo: I. Electrical measurements, ionic fluxes and regional heterogeneity

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The chick blastoderm at the stage of late gastrula is a flat disc formed by three cell layers and exhibiting epithelial properties. Blastoderms were cultured in miniature chambers and their electrophysiological characteristics were determined under Ussing conditions.

Under open-circuit condition and identical physiological solutions on both sides, spontaneous transblastodermal potential difference (V oc) of −7.5±3.3 mV (ventral side positive) was measured. Under short-circuit condition (transblastodermal ΔV = 0 mV), the blastoderm generated short-circuit current (I sc) of 21±8 μA/cm2, which was entirely dependent on extracellular sodium, sensitive to ouabain applied ventrally and independent of extracellular chloride. The net transblastodermal Na+ flux fully accounted for the measured I sc, both under control conditions and with ouabain. The total transblastodermal resistance (R tot) was 390±125 Ωcm2.

Frequently, the V oc, I sc and R tot showed spontaneous oscillations with a period of 4–5 min. Removal of endoderm and mesoderm did not significantly affect the electrical properties, indicating that the electrogenic sodium transport is generated by the ectoderm.

The V oc and I sc measured in the area pellucida (−1.3±0.8 mV, 9.3±4.4 μA/cm2) and extraembryonic area opaca (−7.8±1.1 mV, 31.2±12.7 μA/cm2) were significantly different. Such a heterogeneous distribution of electrical properties can explain the presence in the blastoderm of extracellular electrical currents found by using a vibrating probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abriel, H., Katz. U., Kučera, P. 1994. Ion transport across the early chick embryo: II. Characterization and pH sensitivity of the trans-embryonic short-circuit current J. Membrane Biol. 141:159–166

    Google Scholar 

  • Balinsky, B.I. 1981. An Introduction to Embryology. Fifth edition. pp. 208–246 and 333–343. Holt-Saunders, Japan

    Google Scholar 

  • Benos, D.J. 1981. Developmental changes in epithelial transport characteristics of preimplantation rabbit blastocysts. J. Physiol. 316:191–202

    Google Scholar 

  • Borland, R.M. 1977. Transport processes in the mammalian blastocyst. Dev. Mammals 1:31–67

    Google Scholar 

  • Chan, S.T.H., Wong, P.Y.D. 1978. Evidence of active sodium transport in the visceral yolk sac of the rat in vitro. Physiology 279:385–394

    Google Scholar 

  • Cross, M.H., Brinster, R.L. 1970. Influence of ions, inhibitors and anoxia on transtrophoblast potential of rabbit blastocyst. Exp. Cell Res. 62:303–309

    Google Scholar 

  • Cross, M.H. 1973. Active sodium and chloride transport across the rabbit blastocoele wall. Biol. Reprod. 8:566–575

    Google Scholar 

  • DiZio, S.M., Tasca, R.J. 1977. Sodium-dependent amino acid transport in preimplantation mouse embryos. III. Na+-K+-ATPase linked mechanism in blastocysts. Dev. Biol. 59:198–205

    Google Scholar 

  • Ehrenfeld, J., Garcia-Romeu, F. 1980. Kinetics of ionic transport across the frog skin: Two concentration-dependent processes. J. Membrane Biol. 56:134–147

    Google Scholar 

  • Fleming, T.P., McConnell, J., Johnson, M.H., Stevenson, B.R. 1989. Development of tight junctions de novo in the mouse early embryo: Control of assembly of the tight junction-specific protein, ZO-1. J. Cell Biol. 108:1407–1418

    Google Scholar 

  • Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia. Nature New Biol. 235:9–13

    Google Scholar 

  • Graves, J. S., Dunn, B. E., Brown, S. C. 1986. Embryonic chick allantois: functional isolation and development of sodium transport. Am. J. Physiol. 251:C787-C794

    Google Scholar 

  • Hamburger, V., Hamilton, H. 1951. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92

    Google Scholar 

  • Herrera, F.C. 1966. Action of ouabain on sodium transport in the toad urinary bladder. Am. J. Physiol. 210:980–986

    Google Scholar 

  • Holtug, K., Shipley, A., Dantzers, V., Sten-Knudsen, O., Skadhauge, E. 1991. Localization of sodium absorption and chloride secretion in an intestinal epithelium. J. Membrane Biol. 122:215–229

    Google Scholar 

  • Howard, E. 1957. Ontogenetic changes in the freezing point and sodium and potassium content of the subgerminal fluid and blood plasma of the chick embryo. J. Comp. Physiol. 50:451–470

    Google Scholar 

  • Komazaki, S., Takada, M. 1988. Amiloride-sensitive potential difference across the blastocoelic wall of early embryos of the newt, Cynops pyrrhogaster. Comp. Biochem. Physiol. 91A:129–133

    Google Scholar 

  • Kučera, P., Burnand, M.-B. 1987. Mechanical tension and movement in the chick blastoderm as studied by real-time image analysis. J. Exp. Zool. 81:329–339

    Google Scholar 

  • Kučera, P., de Ribaupierre, Y. 1989. Extracellular electrical currents in the chick blastoderm. Biol. Bull. 176(S):118–122

    Google Scholar 

  • Kučera, P., Katz, U. 1988. Sodium current clock in the early chick embryo. Experientia 44:A34 (Abstr.)

    Google Scholar 

  • Kučera, P., Monnet-Tschudi, F. 1987. Early functional differentiation in the chick embryonic disc: interaction between mechanical activity and extracellular matrix. J. Cell Sci. S8:418–431

    Google Scholar 

  • Kučera, P., Raddatz, E. 1980. Spatio-temporal measurements of the oxygen uptake in the developing chick embryo. Resp. Physiol. 39:199–215

    Google Scholar 

  • Kučera, P., Raddatz, E., Baroffio, A. 1984. Oxygen and glucose uptakes in the early chick embryo. In: Respiration and Metabolism of Embryonic Vertebrates. W. Seymour, editor. pp. 299–309. Junk Publ., Dordrecht, Boston, London

    Google Scholar 

  • Manejwala, F.M., Cragoe, E.J., Schultz, R.M. 1989. Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 133:210–220

    Google Scholar 

  • Morill, G.A., Kostellow, A.B., Watson, D.E. 1966. The electropotential difference between the blastocoel and the external medium in the amphibian embryo: Its similarity to adult frog trans-skin potential. Life Sci. 5:705–709

    Google Scholar 

  • Powers, R.D., Borland, R.W., Biggers, J.D. 1977. Amiloride-sensitive rheogenic Na+ transport in rabbit blastocyst. Nature 270:603–604

    Google Scholar 

  • Raddatz, E., de Ribaupierre, Y., Kučera, P. 1987. Micromeasurements of total and regional CO2 productions in the one-day old chick embryo. Resp. Physiol. 70:1–11

    Google Scholar 

  • Raddatz, E., Kučera, P. 1983. Mapping of the oxygen consumption in the gastrulating chick embryo. Resp. Physiol. 51:153–166

    Google Scholar 

  • Romanoff, A.L. 1967. Biochemistry of the Avian Egg. pp. 202–229. Wiley, New York

    Google Scholar 

  • Simkiss, K. 1980. Water and ionic fluxes inside the egg. Amer. Zool. 20:385–393

    Google Scholar 

  • Smith, M.W. 1970. Active transport in the rabbit blastocyst. Experientia 26:736–738

    Google Scholar 

  • Stern, C.D., MacKenzie, D.O. 1983. Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77:73–98

    Google Scholar 

  • Stern, C.D., Manning, S., Gillespie, J.I. 1985. Fluid transport across the epiblast of the chick embryo. J. Embryol. Exp. Morphol. 88:365–384

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110–127

    Google Scholar 

  • Wakely, J., England, M.A. 1978. Development of the chick embryo endoderm studied by S.E.M. Anat. Embryol. 153:167–178

    Google Scholar 

  • Wiley, L.M. 1984. Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of nascent blastocoele fluid. Dev. Biol. 105:330–342

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Swiss National Research Foundation (grant. 3.418-0.86 to P.K.) and by Roche Research Foundation (grant. to U.K.). We thank Drs. E. Raddatz and Y. de Ribaupierre for helpful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučera, P., Abriel, H. & Katz, U. Ion transport across the early chick embryo: I. Electrical measurements, ionic fluxes and regional heterogeneity. J. Membarin Biol. 141, 149–157 (1994). https://doi.org/10.1007/BF00238248

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00238248

Key words

Navigation