Skip to main content
Log in

Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

A study has been made of the corticocortical efferent and afferent connections of the posterior bank of the arcuate sulcus in the macaque monkey. The distribution of efferent projections to the primary motor cortex (MI) was studied by injecting three different fluorescent retrograde tracers into separate regions of MI. The resultant labeling showed a discrete and topographically organized projection: neurons lying below the inferior limb of the arcuate sulcus project into the MI face area, while neurons located in the posterior bank of the inferior limb of the arcuate sulcus and in the arcuate spur region project into the MI hand area. These findings were confirmed electrophysiologically by demonstrating that postarcuate neurons could only be activated antidromically by stimulation within restricted regions of MI. HRP injections within postarcuate cortex indicated that afferents to this region arise from a number of cortical areas. However, the largest numbers of labeled neurons were found in the posterior parietal cortex (area 7b; PF) and in the secondary somatosensory region (SII). Neurons in both 7b (PF) and SII could be antidromically activated by postarcuate stimulation. It was further shown that stimulation of area 7b (PF) gives rise to short-latency synaptic responses in postarcuate neurons, including some neurons with identified projections to MI. The results are discussed in relation to the possible function of the postarcuate region of the premotor cortex in the sensory guidance of movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asanuma H, Rosén I (1973) Spread of mono- and polysynaptic connections within cat's motor cortex. Exp Brain Res 16: 507–520

    Google Scholar 

  • Barbas H, Mesulam M-M (1981) Organization of afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200: 407–431

    Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Dann O (1979) Fluorescent retrograde neuronal labelling in rat by means of substances binding specifically to adenine-thymine rich DNA. Neurosci Lett 12: 235–240

    Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers, which are transported over long distances. Neurosci Lett 18: 25–30

    Google Scholar 

  • Bignall KE, Imbert M (1969) Polysensory and cortico-cortical projections to frontal lobe of squirrel and rhesus monkeys. Electroencephalogr Clin Neurophysiol 26: 206–215

    Google Scholar 

  • Brinkman C, Porter R (1979) Supplementary motor area in the monkey: Activity of neurons during performance of a learned motor task. J Neurophysiol 42: 681–709

    Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM (1976) Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey. Neurosci Lett 3: 245–252

    Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM, Lemon RN (1979) Cells of origin of the frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci Lett 12: 41–46

    Google Scholar 

  • Chavis DA, Pandya DN (1976) Further observations on corticofrontal connections in the rhesus monkey. Brain Res 117: 369–386

    Google Scholar 

  • Coulter JD, Jones EG (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res 129: 335–340

    Google Scholar 

  • Deuel RK (1977) Loss of motor habits after cortical lesions. Neuropsychologia 15: 205–215

    Google Scholar 

  • Evarts EV, Tanji J (1974) Gating of motor cortex reflexes by prior instruction. Brain Res 71: 479–494

    Google Scholar 

  • Fulton JF (1935) Definition of the ‘motor’ and ‘premotor’ areas. Brain 58: 311–316

    Google Scholar 

  • Galaburda AM, Pandya DN (1982) Role of architectonics and connections in the study of primate brain evolution. In: Armstrong E, Falk D (eds) Primate Brain Evolution: Methods and Concepts. Plenum Press, New York, pp 203–216

    Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. Brain 88: 585–644

    Google Scholar 

  • Godschalk M, Lemon RN (1983) Involvement of monkey premotor cortex in the preparation of arm movements. Exp Brain Res Suppl 7: 114–119

    Google Scholar 

  • Godschalk M, Lemon RN, Nijs HGT, Kuypers HGJM (1981) Behaviour of neurons in monkey peri-arcuate and precentral cortex before and during visually guided arm and hand movements. Exp Brain Res 44: 113–116

    Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302

    Google Scholar 

  • Haaxma R, Kuypers HGJM (1975) Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhesus monkey. Brain 98: 239–260

    Google Scholar 

  • Halsband U, Passingham R (1982) The role of premotor and parietal cortex in the direction of action. Brain Res 240: 368–372

    Google Scholar 

  • Hartmann-von Monakow K, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the rat nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34: 91–105

    Google Scholar 

  • Hyvärinen J (1982) The posterior parietal lobe of the primate brain. Physiol Res 62: 1060–1129

    Google Scholar 

  • Hyvärinen J, Poranen A (1974) Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain 97: 673–692

    Google Scholar 

  • Hyvärinen J, Shelepin Y (1979) Distribution of visual and somatic functions in the parietal associative area 7 of the monkey. Brain Res 169: 561–564

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen CF (1934) Influence of motor and premotor area lesions upon the retention of skilled movements in monkeys and chimpanzees. Res Publ Ass Nerv Ment Dis 13: 225–247

    Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of the thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168: 197–247

    Google Scholar 

  • Jones EG, Powell TPS (1969) Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions. Brain 92: 477–502

    Google Scholar 

  • Jones EG, Wise SP (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J Comp Neurol 175: 391–437

    Google Scholar 

  • Keizer K, Kuypers HGJM, Huisman AM, Dann O (1983) Diamidino Yellow dihydrochloride (DY.2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell. Exp Brain Res 51: 179–191

    Google Scholar 

  • Kubota K, Hamada I (1978) Visual tracking and neuron activity in the postarcuate area in monkeys. J Physiol (Paris) 74: 297–312

    Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15: 185–234

    PubMed  Google Scholar 

  • Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4: 151–188

    Article  CAS  PubMed  Google Scholar 

  • Kwan HC, MacKay WA, Murphy JT, Wong YC (1978) Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol 41: 1120–1131

    Google Scholar 

  • Leinonen L, Hyvärinen J, Nyman G, Linnankoski I (1979) I. Functional properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34: 299–320

    CAS  PubMed  Google Scholar 

  • Leinonen L, Nyman G (1979) II. Functional properties of cells in anterolateral part of area 7 associative face area of awake monkeys. Exp Brain Res 34: 321–333

    Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40: 362–389

    Google Scholar 

  • Matsumura M, Kubota K (1979) Cortical projection to hand-arm motor area from post-arcuate area in macaque monkeys: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11: 241–246

    Google Scholar 

  • McGuinness E, Sivertsen D, Allman JM (1980) Organization of the face representation in macaque motor cortex. J Comp Neurol 193: 591–608

    Google Scholar 

  • Mesulam MM (1978) Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Moll L, Kuypers HGJM (1977) Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198: 317–319

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38: 871–908

    Google Scholar 

  • Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas. Brain Res 177: 176–182

    Google Scholar 

  • Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195: 339–365

    Google Scholar 

  • Pandya DN, Kuypers HGJM (1969) Cortico-cortical connections in the rhesus monkey. Brain Res 13: 13–36

    Google Scholar 

  • Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26: 217–233

    Google Scholar 

  • Ranck JB, Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98: 417–440

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Matelli M, Pavesi G (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain Res 106: 655–673

    Google Scholar 

  • Rizzolatti G, Scandolara C, Gentilucci M, Camarda R (1981a) Response properties and behavioral modulation of ‘mouth’ neurons of the postarcuate cortex (area 6) in macaque monkeys. Brain Res 225: 421–424

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981b) Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav Brain Res 2: 125–146

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Scandolara C, Matelli M, Gentilucci M (1981c) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2: 147–163

    Article  CAS  PubMed  Google Scholar 

  • Robinson CJ, Burton H (1980a) Somatotopographic organization in the second somatosensory area of M. fascicularis. J Comp Neurol 192: 43–67

    Google Scholar 

  • Robinson CJ, Burton H (1980b) Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis. J Comp Neurol 192: 69–92

    Google Scholar 

  • Robinson CJ, Burton H (1980c) Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis. J Comp Neurol 192: 93–108

    Google Scholar 

  • Sakai M (1978) Single unit activity in a border area between the dorsal prefrontal and premotor regions in the visually conditioned motor task of monkeys. Brain Res 147: 377–383

    Google Scholar 

  • Seltzer B, Pandya DN (1980) Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey. Brain Res 192: 339–351

    Article  CAS  PubMed  Google Scholar 

  • Sessle BJ, Wiesendanger M (1982) Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis). J Physiol (Lond) 323: 245–265

    Google Scholar 

  • Sloper JJ, Hiorns RW, Powell TPS (1979) A qualitative and quantitative electron microscopic study of the neurons in the primate motor and somatic sensory cortices. Philos Trans R Soc Lond B 285: 141–171

    Google Scholar 

  • Sloper JJ, Powell TPS (1979) An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. Philos Trans R Soc Lond B 285: 199–226

    Google Scholar 

  • Stanton GB, Cruce,WLR, Goldberg ME, Robinson DL (1977) Some ipsilateral projections to areas PF and PG of the inferior parietal lobule in monkeys. Neurosci Lett 6: 243–250

    Google Scholar 

  • Strick PL, Kim CC (1978) Input to primate motor cortex from posterior parietal cortex (area 5). I. Demonstration by retrograde transport. Brain Res 157: 325–330

    Google Scholar 

  • Ward AA, Peden JK, Sugar O (1946) Cortico-cortical connections in the monkey with special reference to area 6. J Neurophysiol 9: 453–461

    Google Scholar 

  • Weinrich M, Wise SP (1982) The premotor cortex of the monkey. J Neurosci 2: 1329–1345

    CAS  PubMed  Google Scholar 

  • Weinrich M, Wise SP, Mauritz K-H (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107: 385–414

    PubMed  Google Scholar 

  • Wiesendanger M (1981) Organization of secondary motor areas of cerebral cortex. In: Brookhart JM, Mountcastle VB (eds) Handbook of Physiology Section 1: The Nervous System, Vol II, Part 2. American Physiological Society, Bethesda, Md, pp 1121–1147

    Google Scholar 

  • Wise SP (1984) The non-primary motor cortex and its role in the cerebral control of movement. In: Edelman G, Cowan W, Gall E (eds) Dynamic Aspects of Cortical Function, Wiley, New York (in press)

    Google Scholar 

  • Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in the precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area. Res Publ Ass Nerv Ment Dis 30: 238–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godschalk, M., Lemon, R.N., Kuypers, H.G.J.M. et al. Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp Brain Res 56, 410–424 (1984). https://doi.org/10.1007/BF00237982

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237982

Key words

Navigation