Skip to main content
Log in

The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The projection of the nucleus reticularis tegmenti pontis and the adjacent tegmental area, to the caudal brain stem and the cerebellum were investigated by means of anterograde transport of tritiated leucine. The nucleus reticularis tegmenti pontis was found to be exclusively connected with the cerebellum. Mossy fiber terminals were absent only from lobule X and most abundant in lobule VII and the hemispheres with a slight contralateral predominance. The paramedian pontine reticular formation projects with bilateral symmetry to the cerebellar lobules VI, VII and the crura I and II, and heavily to the medial aspect of predominantly the ipsilateral reticular formation in the lower brain stem including specific targets as the nucleus reticularis paramedianus, the nucleus prepositus hypoglossi, the nucleus intercalatus, the nucleus of Roller, the nucleus supragenualis and the dorsal cap of the inferior olive. The nucleus vestibularis medialis receives a very weak projection. The connections are discussed in the light of their possible involvement in pathways for the execution of voluntary and reflex eye movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

brachium pontis

CBL:

cerebellum

cr I, II:

crus I, II

ct:

corpus trapezoides

dc:

dorsal cap of Kooy

dl:

dorsal lamina of the principal olive

FL:

flocculus

flm:

fasciculus longitudinalis medialis

gVII:

genu of the facial nerve

H VI:

hemisphere of lobule VI

IO:

inferior olivary nucleus

ll:

lemniscus lateralis

ml:

lemniscus medialis

NCS:

nucleus centralis superior

NIC:

nucleus intercalatus

NP:

nuclei pontis

NPH:

nucleus prepositus hypoglossi

NRaP:

nucleus raphe pontis

NRGc:

nucleus reticularis gigantocellularis

NRL:

nucleus reticularis lateralis

NRo:

nucleus of Roller

NRP:

nucleus reticularis paramedianus

NRPoC:

nucleus reticularis pontis caudalis

NRPoO:

nucleus reticularis pontis oralis

NRTP:

nucleus reticularis tegmenti pontis

NSG:

nucleus supragenualis

NVM:

nucleus vestibularis medialis

N VI:

nucleus abducens

n XII:

nervus hypoglossus

ped:

pedunculus cerebri

PFLD:

dorsal paraflocculus

PFLV:

ventral paraflocculus

PMD:

paramedian lobule

PPRF:

pontine paramedian reticular formation

vl:

ventral lamina of the principal olive

vlo:

ventrolateral outgrowth

X:

nucleus dorsalis vagi

XII:

nucleus hypoglossus

I-X:

lobules I to X

References

  • Albus K, Donate-Oliver F, Sanides D, Fries W (1981) The distribution of pontine projection cells in visual and association cortex of the cat: an experimental study with horseradish peroxidase. J Comp Neurol 201: 175–189

    Google Scholar 

  • Alley K, Baker R, Simpson JI (1975) Afferents to the vestibulocerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98: 582–589

    Google Scholar 

  • Aschoff JC, Cohen B (1971) Changes in saccadic eye movements produced by cerebellar cortical lesions. Exp Neurol 32: 123–133

    Google Scholar 

  • Azzena GB, Desole C, Palmieri G (1970) Cerebellar projections of the masticatory and extra-ocular muscle proprioception. Exp Neurol 27: 151–161

    Google Scholar 

  • Baker R, Berthoz A (1975) Is the prepositus hypoglossi nucleus the source of another vestibulo-ocular pathway? Brain Res 86: 121–127

    Google Scholar 

  • Baker R, Precht W, Llinas R (1972) Mossy and climbing fiber projections of extraocular muscle afferents to the cerebellum. Brain Res 38: 440–445

    Google Scholar 

  • Balaban CD (1983) A projection from nucleus reticularis tegmenti pontis of Bechterew to the medial vestibular nucleus in rabbits. Exp Brain Res 51: 304–309

    Google Scholar 

  • Barmack NH, Simpson JI (1980) Effects of microlesions of dorsal cap of inferior olive on optokinetic and vestibulo-ocular reflexes. J Neurophysiol 43: 182–206

    Google Scholar 

  • Batini C, Buisseret-Delmas C, Corvisier J, Hardy O, Jassik-Gerschenfeld D (1978) Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res 153: 241–261

    Google Scholar 

  • Batini C, Buisseret P, Kado RT (1974) Extraocular proprioceptive and trigeminal projections to the Purkinje cells of the cerebellar cortex. Arch Ital Biol 112: 1–17

    Google Scholar 

  • Bender MB, Schanzer S (1964) Oculomotor pathways defined by electrical stimulation and lesions in the brain stem of the monkey. In: MB Bender (ed). The oculomotor system Harper and Row, New York, pp 81–140

    Google Scholar 

  • Blanks RHI, Precht W, Torigoe Y (1983) Afferent projections to the cerebellar flocculus in the pigmented rat demonstrated by retrograde transport of horseradish peroxidase. Exp Brain Res 52: 293–306

    Google Scholar 

  • Brodal A (1952) Experimental demonstration of cerebellar connections from the perihypoglossal nuclei (nucleus intercalatus, nucleus prepositus hypoglossi and nucleus of Roller) in the cat. J Anat 86: 110–129

    Google Scholar 

  • Brodal A (1957) The reticular formation of the brain stem; anatomical aspects and funtional correlations. The William Ramsey Henderson Trust Lecture, Oliver Boyd, Edinburgh

    Google Scholar 

  • Brodal A, Lacerda AM, Destombes J, Angaut P (1972) The pattern in the projection of the intracerebellar nuclei onto the nucleus reticularis tegmenti pontis in the cat. An experimental anatomical study. Exp Brain Res 16: 140–160

    Google Scholar 

  • Brodal A, Jansen J (1946) The ponto-cerebellar projection in the rabbit and the cat. J Comp Neurol 84: 31–118

    Google Scholar 

  • Brodal A, Torvik A (1954) Cerebellar projection of paramedian reticular nucleus of medulla oblongata of cat. J Neurophysiol 17: 484–495

    Google Scholar 

  • Büttner-Ennever JA (1979) Organization of reticular projections to oculomotor neurons. In: Granit R, Pompeiano O, (eds) Progress in brain research, Vol 50, Reflex control of posture and movement. Elsevier, Amsterdam, pp 619–630

    Google Scholar 

  • Büttner-Ennever JA, Henn V (1976) An autoradiographic study of the pathways from the pontine reticular formation involved in horizontal eye movements. Brain Res 108: 155–164

    Google Scholar 

  • Cazin L, Magnin M, Lannou J (1982) Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp Brain Res 48: 309–313

    Google Scholar 

  • Cazin L, Precht W, Lannou J (1980a) Pathways mediating optokinetic responses of vestibular nucleus neurons in the rat. Pflügers Arch Ges Physiol 384: 19–29

    Google Scholar 

  • Cazin L, Precht W, Lannou J (1980b) Firing characteristics of neurons mediating optokinetic responses to rat's vestibular neurons. Pflügers Arch Ges Physiol 386: 221–230

    Google Scholar 

  • Cohen B, Komatsuzaki A (1972) Eye movements induced by stimulation of the pontine reticular formation: evidence for integration in oculomotor pathways. Exp Brain Res 36: 101–117

    Google Scholar 

  • Dufossé M, Ito M, Miyashita Y (1977) Functional localization in the rabbit's cerebellar flocculus determined in relationship with eye movements. Neurosci Lett 5: 273–278

    Google Scholar 

  • Eckmiller R (1981) A model of the neural network controlling foveal pursuit eye movements. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier, New York, Amsterdam, pp 541–558

    Google Scholar 

  • Evinger C, Kaneko CRS, Johanson GW, Fuchs AF (1977) Omnipauser cells in the cat. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience, Vol 1. Elsevier, New York pp 337–340

    Google Scholar 

  • Gerrits NM, Epema AH, Voogd J (1984a) The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat. Neuroscience 11: 627–644

    Google Scholar 

  • Gerrits NM, Voogd J (1982) The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7: 2971–2991

    Google Scholar 

  • Gerrits NM, Voogd J, Magras IN (1985) Vestibular nuclear efferents to the nucleus raphe pontis, the nucleus reticularis tegmenti pontis and the nuclei pontis in the cat. Neurosci Lett 54: 357–362

    Google Scholar 

  • Gerrits NM, Willemse-vd Geest L, Kornet M (1984b) Some observations on the cerebellopontine projections in the cat — with a hypothesis to explain species differences. Neurosci Lett 44: 65–70

    Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173: 629–654

    Google Scholar 

  • Graybiel AM (1977) Direct and indirect preoculomotor pathways of the brain stem: an autoradiographic study of the pontine reticular formation in the cat. J Comp Neurol 175: 37–78

    Google Scholar 

  • Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81: 543–551

    Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parsagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of the cat cerebellum. J Comp Neurol 174: 417–488

    Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey. J Comp Neurol 173: 583–612

    Google Scholar 

  • Hikosaka O, Igusa Y (1980) Axonal projections of prepositus hypoglossi and reticular neurons in the brain stem of the cat. Exp Brain Res 39: 441–451

    Google Scholar 

  • Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209: 139–175

    Google Scholar 

  • Holstege G, Kuypers HGJM (1982) The anatomy of brain stem pathways to the spinal cord in the cat. A labeled amino acid tracing study. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Progress in Brain Res, Vol 57, Elsevier, Amsterdam New York, pp 145–175

    Google Scholar 

  • Ito M (1975) The vestibulo-cerebellar relationships: vestibuloocular reflex arc and flocculus. In: Naunton RF (ed) The vestibular system, Academic Press, New York, pp 129–145

    Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Ito M, Miyashita Y (1975) The effects of chronic destruction of the inferior olive upon visual modification of the horizontal vestibulo-ocular reflex in rabbits. Proc Jpn Acad 51: 716–720

    Article  Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1974) Visual influence on rabbit's horizontal vestibulo-ocular reflex that presumably is effected via the cerebellar flocculus. Brain Res 65: 170–174

    Google Scholar 

  • Kase M, Miller DC, Noda H (1980) Discharges of Purkinje cells and mossy fibers in the cerebellar vermis of the monkey during saccadic eye movements and fixation. J Physiol 300: 539–555

    Google Scholar 

  • Kawamura K, Hashikawa T (1981) Projections from the pontine nuclei proper and reticular tegmental nucleus on the cerebellar cortex in the cat. An autoradiographic study. J Comp Neurol 201: 395–413

    Google Scholar 

  • Kawamura K, Brodal A, Hoddevik GH (1974) The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Exp Brain Res 19: 1–19

    Google Scholar 

  • Keller EL, Precht W (1979) Visual-vestibular responses in vestibular nuclear neurons in intact and cerebellectomized, alert cat. Neuroscience 4: 1599–1613

    Google Scholar 

  • Kotchabhakdi N, Hoddevik GH, Walberg F (1978) Cerebellar afferent projections from the perihypoglossal nuclei: an experimental study with the method of retrograde transport of horseradish peroxidase. Exp Brain Res 31: 13–29

    Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J Comp Neurol 173: 147–163

    Google Scholar 

  • Larsell O (1953) The cerebellum of the cat and the monkey. J Comp Neurol 99: 135–199

    Google Scholar 

  • Leichnetz GR, Smith DJ, Spencer RF (1984) Cortical projections to the paramedian tegmental and basilar pons in the monkey. J Comp Neurol 228: 388–408

    Google Scholar 

  • Llinas R, Wolfe JW (1977) Functional linkage between the electrical activity in the vermal cerebellar cortex and saccadic eye movements. Exp Brain Res 29: 1–14

    Google Scholar 

  • Maciewicz RJ, Eagen K, Kaneko CRS, Highstein SM (1977) Vestibular and medullary brain stem afferents to the abducens nucleus in the cat. Brain Res 123: 229–240

    Google Scholar 

  • Maekawa K, Kimura M (1981) Electrophysiological study of the nucleus of the optic tract that transfers optic signals to the nucleus reticularis tegmenti pontis — visual mossy fiber pathway to the cerebellar flocculus. Brain Res 211: 456–462

    Google Scholar 

  • Maekawa K, Simpson JI (1972) Climbing fiber activation of Purkinje cells in the flocculus by impulses transferred through the visual pathway. Brain Res 39: 245–251

    Google Scholar 

  • Maekawa K, Takeda T (1975) Mossy fiber responses evoked in the cerebellar flocculus in rabbits by stimulation of the optic pathway. Brain Res 98: 590–595

    Google Scholar 

  • Maekawa K, Takeda T (1979) Origin of descending afferents to the rostral part of dorsal cap of inferior olive which transfers contralateral optic activities to the flocculus. A horseradish peroxidase study. Brain Res 172: 393–405

    Google Scholar 

  • Maekawa K, Takeda T, Kimura M (1981) Neural activity of nucleus reticularis tegmenti pontis. The origin of visual mossy fiber afferents to the cerebellar flocculus of rabbits. Brain Res 210: 17–30

    Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. Prog Brain Res 50: 653–665

    Google Scholar 

  • Miyashita Y, Ito M, Jastreboff PJ, Maekawa K, Nagao S (1980) Effect upon eye movements of rabbits induced by severance of mossy fiber visual pathway to the cerebellar flocculus. Brain Res 198: 210–215

    Google Scholar 

  • Pompeiano O, Mergner T, Corvaja N (1978) Commissural, perihypoglossal and reticular afferent projections to the vestibular nuclei in the cat. An experimental anatomical study with the method of the retrograde transport of horseradish peroxidase. Archs Ital Biol 116: 130–172

    Google Scholar 

  • Precht W, Strata P (1980) On the pathway mediating optokinetic responses in vestibular nuclear neurons. Neuroscience 5: 777–787

    Google Scholar 

  • Robinson DA (1977) Vestibular and optokinetic symbiosis: an example of explaning by modeling. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Developments in neuroscience, Vol 1, Elsevier, Amsterdam, pp 49–58

    Google Scholar 

  • Robinson DA (1981) The use of control system analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4: 463–503

    Google Scholar 

  • Ron S, Robinson A (1973) Eye movements evoked by cerebellar stimulation in the alert monkey. J Neurophysiol 36: 1004–1022

    Google Scholar 

  • Somana R, Walberg F (1978) Cerebellar afferents from the paramedian reticular nucleus studied with retrograde transport of horseradish peroxidase. Anat Embryol 154: 353–368

    Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey. J Neurophysiol 46: 1120–1139

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116: 27–69

    Google Scholar 

  • Taber E, Brodal A, Walberg F (1960) The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion. J Comp Neurol 114: 161–187

    Google Scholar 

  • Takemori S, Cohen B (1974) Loss of visual suppression of vestibular nystagmus after flocculus lesions. Brain Res 72: 213–224

    Google Scholar 

  • Toyama M, Sakai K, Salvert D, Touret M, Jouvet M (1979) Spinal projections from the lower brain stem in the cat as demonstrated by horseradish peroxidase technique. I. Origins of the reticulospinal tracts and their funicular trajectories. Brain Res 173: 383–404

    Google Scholar 

  • Verhaart WJC (1964) A stereotactic atlas of the brain stem of the cat. Van Gorcum, Assen

    Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Structure and fiber connections. Thesis, Van Gorcum, Assen

    Google Scholar 

  • Waespe W, Büttner U, Henn V (1981) Visual-vestibular interaction in the flocculus of the alert monkey. I. Input activity. Exp Brain Res 43: 337–348

    Google Scholar 

  • Yamamoto M (1978) Localization of rabbit's flocculus Purkinje cells projecting to the cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde axonal transport. Neurosci Lett 7: 197–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerrits, N.M., Voogd, J. The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62, 29–45 (1986). https://doi.org/10.1007/BF00237401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237401

Key words

Navigation