Skip to main content

The vestibulothalamic projections in the cat studied by retrograde axonal transport of horseradish peroxidase

Summary

Horseradish peroxidase (HRP) was injected or iontophoretically ejected in various thalamic nuclei in 63 adult cats. In 11 other animals HRP was deposited outside the thalamic territory. The number and distribution of labelled cells within the vestibular nuclear complex (VC) were mapped in each case. To a varying degree all subgroups of VC appear to contribute to the vestibulothalamic projections. Such fibres are distributed to several thalamic areas. From the present investigation it appears that generally speaking, there exist three distinct vestibulothalamic pathways with regard to origin as well as to site of termination of the fibres. One projection appears to originate mainly in caudal parts of the medial (M) and descending (D) vestibular nuclei and in cell group z. This pathway terminates chiefly in the contralateral medial part of the posterior nucleus of the thalamus (POm) including the magnocellular part of the medial geniculate body (Mgmc), the ventrobasal complex (VB) and the area of the ventral lateral nucleus (VL) bordering on VB. A second projection originates mainly in the superior vestibular nucleus (S) and in cell group y and terminates mainly in the contralateral nucleus centralis lateralis (CL) and the adjoining nucleus paracentralis (Pc). A third, more modest, pathway originates chiefly in the middle M and D, with a minor contribution from S and cell group y, and terminates in the contralateral ventral nucleus of the lateral geniculate body (GLV). There is some degree of overlap between the origin of these three vestibulothalamic pathways.

This is a preview of subscription content, access via your institution.

Abbreviations

B.c.:

brachium conjunctivum

CeM:

nucleus centralis medialis thalami

CL:

nucleus centralis lateralis thalami

CM:

nucleus centrum medianum

D:

nucleus vestibularis descendons

f:

cell group f

g:

cell group g

GLD:

corpus geniculatum laterale dorsalis

GLV:

corpus geniculatum laterale ventralis

i.e.:

nucleus intercalatus

L:

nucleus vestibularis lateralis

LD:

nucleus lateralis dorsalis thalami

LIM:

lamina medullaris interna

Lim:

nucleus limitans

LP:

nucleus lateralis posterior thalami

M:

nucleus vestibularis medialis

MD:

nucleus medialis dorsalis thalami

MGmc:

corpus geniculatum mediale, pars magnocellularis

MGp:

corpus geniculatum mediale, pars principalis

N.cu.e.:

nucleus cuneatus externus

N.f.c.:

nucleus fasciculi cuneati

N.mes.:

V nucleus mesencephalicus nervi trigemini

NR:

nucleus ruber

N.tr.s.:

nucleus tractus solitarius

N.:

VII nervus facialis

N.:

VIII nervus statoacusticus

PC:

pedunculus cerebri

Pc:

nucleus paracentralis thalami

Pf:

nucleus parafascicularis

p.h.:

nucleus prepositus hypoglossi

PO:

posterior thalamic group

PO1:

lateral part of PO

POm:

medial part of PO

Prt:

nucleus pretectalis

Pul:

pulvinar

R:

nucleus reticularis thalami

S:

nucleus vestibularis superior

Sg:

nucleus suprageniculatus

SN:

substantia nigra

Sv:

nucleus supravestibularis

Tr.s.:

tractus solitarius

VA:

nucleus ventralis anterior thalami

VL:

nucleus ventralis lateralis thalami

VPL:

nucleus ventralis posterior lateralis

VPL1:

lateral part of VPL

VPLm:

medial part of VPL

VPM:

nucleus ventralis posterior medialis

x:

cell group x

y:

cell group y

z:

cell group z

V:

nucleus motorius nerve trigemini

X:

nucleus dorsalis nerve vagi

XII:

nucleus nervi hypoglossi

References

  • Abraham L, Copack PB, Gilman S (1977) Brain stem pathways for vestibular projections to cerebral cortex in the cat. Exp Neurol 55: 436–448

    Google Scholar 

  • Blum PS, Abraham LD, Gilman S (1979) Vestibular, auditory, and somatic input to the posterior thalamus of the cat. Exp Brain Res 34: 1–9

    Google Scholar 

  • Blum PS, Gilman S (1979) Vestibular, somatosensory, and auditory input to the thalamus of the cat. Exp Neurol 65: 343–354

    Google Scholar 

  • Boivie J (1971) The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp Brain Res 12: 331–353

    Google Scholar 

  • Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186: 343–370

    Google Scholar 

  • Brodal A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber H (ed) Handbook of sensory physiology, vol 6, 1. Springer, Berlin Heidelberg New York, pp 239–352

    Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91: 438–454

    Google Scholar 

  • Brodal A, Pompeiano O (1958) The origin of ascending fibers of the medial longitudinal fasciculus from the vestibular nuclei. An experimental study in the cat. Acta Morphol Neerl Scand 1: 306–328

    Google Scholar 

  • Brodal A, Pompeiano O, Walberg F (1962) The vestibular nuclei and their connections. Ramsay Henderson Trust Lectures. Oliver and Boyd, Edinburgh London

    Google Scholar 

  • Büttner U, Henn V, Oswald HF (1977) Vestibular-related neuronal activity in the thalamus of the alert monkey during sinusoidal rotation in the dark. Exp Brain Res 30: 435–444

    Google Scholar 

  • Carpenter MB, Hanna GR (1962) Lesions of the medial longitudinal fasciculus in the cat. Am J Anat 110: 307–332

    Google Scholar 

  • Carpenter MB, Strominger NL (1965) The medial longitudinal fasciculus and disturbances of conjugated horizontal eye movements in the monkey. J Comp Neurol 125: 41–66

    Google Scholar 

  • Condé F, Condé H (1978) Thalamic projections of the vestibular nuclei in the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett 9: 141–146

    Google Scholar 

  • Copack P, Dafny N, Gilman S (1972) Neurophysiological evidence of vestibular projections to thalamus, basal ganglia, and cerebral cortex. In: Frigyesi T, Rinvik E, Yahr MD (eds) Corticothalamic projections and sensorimotor activities. Raven Press, New York, pp 309–339

    Google Scholar 

  • Deecke L, Schwarz DWF, Fredrickson JM (1973) Response patterns of vestibular thalamic neurons in the rhesus monkey. Equilibrium Res 3: 4–7

    Google Scholar 

  • Deecke L, Schwarz DWF, Fredrickson JM (1974) Nucleus ventroposterior inferior (VPI) as the vestibular thalamic relay in the rhesus monkey. I. Field potential investigation. Exp Brain Res 20: 88–100

    Google Scholar 

  • Deecke L, Schwarz DWF, Fredrickson JM (1977) Vestibular responses in the rhesus monkey ventroposterior thalamus. II. Vestibulo-proprioceptive convergence at thalamic neurons. Exp Brain Res 30: 219–232

    Google Scholar 

  • Fredrickson JM, Toronto HH, Kornhuber U, Schwarz Toronto DWF (1974) Cortical projection of the vestibular nerve. In: Kornhuber H (ed) Handbook of sensory physiology, vol 6. Springer, Berlin Heidelberg New York, pp 565–582

    Google Scholar 

  • Gacek R (1969) The course and central termination of first order neurons supplying vestibular end organs in the cat. Acta Otolaryngol [Suppl] (Stockh) 254: 1–66

    Google Scholar 

  • Gherlarducci B, Highstein SM, Ito M (1977) Origin of the preoculomotor projections through the brachium conjunctivum and their functional roles in the vestibulo-ocular reflex. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Development in neurosciences, vol 1. Elsevier, Amsterdam, pp 167–175

    Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubule of mouse kidney. Ultrastructural cytochemistry of a new technique. J Histochem Cytochem 14: 219–302

    Google Scholar 

  • Grant G, Boivie J, Silfvenius H (1973) Course and termination of fibres from the nucleus Z of the medulla oblongata. An experimental light microscopical study in the cat. Brain Res 55: 55–70

    Google Scholar 

  • Hassler R (1948) Foreis Haubenfaszikel als vestibuläre Empfindungsbahn mit Bemerkungen über einige andere sekundäre Bahnen des Vestibularis und Trigeminus. Arch Psychiatr Nervenkr 180: 23–53

    Google Scholar 

  • Hassler R (1956) Die zentralen Apparate der Wendebewegungen. II. Die neuronalen Apparate der vestibularen Korrekturwendungen und der Adversivbewegungen. Arch Psychiatr Nervenkr 194: 481–516

    Google Scholar 

  • Hassler R (1972) Hexapartition of inputs as a primary role of the thalamus. In: Frigyesi T, Rinvik E, Yahr MD (eds) Corticothalamic projections and sensorimotor activities. Raven Press, New York, pp 551–578

    Google Scholar 

  • Hawrylyshyn PA, Rubin AM, Tasker RR, Organ LW, Fredrickson JM (1978) Vestibulothalamic projections in man — a sixth primary sensory pathway. J Neurophysiol 42: 394–401

    Google Scholar 

  • Hwang JC, Poon WF (1975) An electrophysiological study of the sacculo-ocular pathways in cats. Jpn J Physiol 25: 241–251

    Google Scholar 

  • Jasper HH, Ajmone-Marsan C (1954) A stereotaxic atlas of the diencephalon of the cat. The National Research Council of Canada, Ottawa

    Google Scholar 

  • Jones EG, Burton H (1974) Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154: 395–432

    Google Scholar 

  • Jones EG, Leavitt RY (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol 154: 349–378

    Google Scholar 

  • Kalil K (1978) Patch-like termination of thalamic fibers in the putamen of the rhesus monkey. An autoradiographic study. Brain Res 140: 333–339

    Google Scholar 

  • Keefer DA (1978) Horseradish peroxidase as a retrogradely transported detailed dendritic marker. Brain Res 140: 15–32

    Google Scholar 

  • Kotchabhakdi N, Rinvik E, Yingchareon K, Walberg F (1980) Afferent projections to the thalamus from the perihypoglossal nuclei. Brain Res 187: 457–461

    Google Scholar 

  • Landgren S, Silfvenius H (1971) Nucleus Z, the medullary relay in the projection path to the cerebral cortex of group I muscle afferents from the cat's hind limb. J Physiol (Lond) 218: 551–571

    Google Scholar 

  • Lang W, Büttner-Ennever JA, Büttner U (1979) Vestibular projections to the monkey thalamus. An autoradiographic study. Brain Res 177: 3–17

    Google Scholar 

  • Liedgren SRC, Kristensson K, Larsby B, Ödkvist LM (1976) Projection of thalamic neurons to cat primary vestibular cortical fields studied by means of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 24: 237–243

    Google Scholar 

  • Magnin M, Kennedy H (1979) Anatomical evidence of a third ascending vestibular pathway involving the ventral lateral geniculate nucleus and the intralaminar nuclei of the cat. Brain Res 171: 523–529

    Google Scholar 

  • Magnin M, Putkonen PTS (1978) A new vestibular thalamic area. Electrophysiological study of the thalamic reticular nucleus and of the ventral lateral geniculate complex of the cat. Exp Brain Res 32: 91–104

    Google Scholar 

  • Mesulam M-M (1976) The blue reaction-product in horseradish peroxidase neurohistochemistry: Incubation parameters and visibility. J Histochem Cytochem 24: 1273–1280

    Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Nauta HJW, Pritz MB, Lasek RJ (1974) Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method. Brain Res 67: 219–238

    Google Scholar 

  • Olszewski J (1952) The thalamus of the Macaca mulatta. An atlas for use with the stereotaxic instrument. Karger, Basel New York, p 93

    Google Scholar 

  • Pompeiano O, Brodal A (1957) The origin of spinovestibular fibers in the cat. An experimental study. J Comp Neurol 108: 353–382

    Google Scholar 

  • Precht W (1977) The functional synaptology of brainstem oculomotor pathways. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons. Development in neurosciences, vol 1. Elsevier, Amsterdam, pp 131–141

    Google Scholar 

  • Raymond J, Sans A, Marty R (1974) Projections thalamiques des noyaux vestibulaires. Etude histologique chez le chat. Exp Brain Res 20: 273–293

    Google Scholar 

  • Raymond J, Dememes D, Marty R (1976) Voies et projections vestibulaires ascendantes emanant des noyaux primaires. Etude radioautographique. Brain Res 111: 1–12

    Google Scholar 

  • Rinvik E (1968) A re-evaluation of the cytoarchitecture of the ventral nuclear complex of the cat's thalamus on the basis of corticothalamic connections. Brain Res 8: 237–254

    Google Scholar 

  • Rinvik E (1972) Organization of thalamic connections from motor and somatosensory cortical areas in the cat. In: Frigyesi T, Rinvik E, Yahr MD (eds) Corticothalamic projections and sensorimotor activities. Raven Press, New York, pp 57–88

    Google Scholar 

  • Robertson RT, Rinvik E (1973) The corticothalamic projections from parietal regions of the cerebral cortex. Experimental degeneration studies in the cat. Brain Res 51: 61–79

    Google Scholar 

  • Roucoux-Hanus M, Biosacq-Schepens N (1977) Ascending vestibular projections. Further results at cortical and thalamic levels in the cat. Exp Brain Res 29: 283–292

    Google Scholar 

  • Royce GJ (1978) Autoradiographic evidence for a discontinuous projection to the caudate nucleus from the centromedian nucleus in the cat. Brain Res 146: 145–150

    Google Scholar 

  • Sans A, Raymond J, Marty R (1970) Thalamic and cortical responses to electric stimulation of the vestibular nerve in the cat. Exp Brain Res 10: 265–275

    Google Scholar 

  • Sans A, Raymond J, Marty R (1976) A vestibulothalamic pathway. Electrophysiological demonstration in the cat by localized cooling. J Neurosci Res 2: 167–174

    Google Scholar 

  • Spiegel EA, Szekely EG, Gildenberg PL (1965) Vestibular responses in midbrain, thalamus, and basal ganglia. Arch Neurol 12: 258–269

    Google Scholar 

  • Tarlov E (1969) The rostral projections of the primate vestibular nuclei. An experimental study in macaque, baboon, and chimpanzee. J Comp Neurol 135: 27–56

    Google Scholar 

  • Wagner HJ, Mergner T, Deecke L (1978) Rostral vestibular projection to thalamus and cortex of cat as revealed by retrograde transport of horseradish peroxidase. Neurosci Lett [Suppl] 1: 358

    Google Scholar 

  • Yamamoto M, Shimoyama I, Highstein SM (1978) Vestibular nucleus neurons relaying excitation from the anterior canal to the oculomotor nucleus. Brain Res 148: 31–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotchabhakdi, N., Rinvik, E., Walberg, F. et al. The vestibulothalamic projections in the cat studied by retrograde axonal transport of horseradish peroxidase. Exp Brain Res 40, 405–418 (1980). https://doi.org/10.1007/BF00236149

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236149

Key words

  • Vestibular complex
  • Thalamus
  • Horseradish peroxidase