Skip to main content
Log in

Vestibular signals in the posterior vermis of the alert monkey cerebellum

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Head velocity-related modulations in Purkinje cell activity were observed in lobules VI and VII of the cerebellar vermis. The sensitivities and phase shifts with respect to head velocity of Purkinje cells were comparable with vestibular responses observed in the fastigial nuclei. The results support the hypothesis of a vermal target velocity correlate and necessitate the inclusion of vermal lobules VI and VII among the cerebellar regions involved with vestibular information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batini C, Buisseret-Delman C, Corvisier J, Hardy O, Jassik-Gerschenfeld D (1978) Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res 153: 241–261

    Google Scholar 

  • Berthoz A, Llinás R (1974) Afferent neck projection to the cat cerebellar cortex. Exp Brain Res 20: 385–402

    Google Scholar 

  • Blair S, Gavin M (1979) Modification of the macaque's vestibuloocular reflex after ablation of the cerebellar vermis. Acta Otolaryngol 88: 235–243

    Google Scholar 

  • Brodal A, Høivik B (1964) Site and mode of termination of primary vestibulo-cerebellar fibres in the cat. Arch Ital Biol 102: 1–21

    Google Scholar 

  • Duensing F, Schaefer KP (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiatr Nervenkrankh 198: 225–252

    Google Scholar 

  • Ferin M, Grigorian RA, Strata P (1971) Mossy and climbing fiber activation in the cat cerebellum by stimulation of the labyrinth. Exp Brain Res 12: 1–17

    Google Scholar 

  • Fuchs AF, Kornhuber HH (1969) Extraocular muscle afferents to the cerebellum of the cat. J Physiol (Lond) 200: 713–722

    Google Scholar 

  • Fuchs AF, Robinson DA (1966) A method for measuring horizontal and vertical eye movements chronically in the monkey. J Appl Physiol 21: 1068–1070

    CAS  PubMed  Google Scholar 

  • Furuya N, Kawano K, Shimazu H (1975) Functional organization of vestibulofastigial projection in the horizontal semicircular canal system in the cat. Exp Brain Res 24: 75–87

    Google Scholar 

  • Gardner EP, Fuchs AF (1975) Single-unit responses to natural vestibular stimuli and eye movements in deep cerebellar nuclei of the alert Rhesus monkey. J Neurophysiol 38: 627–649

    Google Scholar 

  • Haines DE (1975) Cerebellar cortical efferents of the posterior lobe vermis in a prosimian primate (Galago) and the tree shrew (Tupaia). J Comp Neurol 163: 21–40

    Google Scholar 

  • Ito M, Yoshida M (1966) The origin of cerebellar-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potential. Exp Brain Res 2: 330–349

    Google Scholar 

  • Ito M, Yoshida M, Obata K, Kawai N, Udo M (1970) Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp Brain Res 10: 64–80

    Google Scholar 

  • Kimm J, Hassul M, Cogdell B (1976) Fastigial neuronal responses to sinusoidal horizontal rotation. Exp Neurol 50: 579–594

    Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Primary vestibular afferent projections to the cerebellum as demonstrated by retrograde axonal transport of horseradish peroxidase. Brain Res 142: 142–146

    Google Scholar 

  • Precht W, Volkind R, Blanks RHI (1977) Functional organization of the vestibular input to the anterior and posterior cerebellar vermis of the cat. Exp Brain Res 27: 143–160

    Google Scholar 

  • Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol (Lond) 159: 326–338

    Google Scholar 

  • Robinson DA (1971) Models of oculomotor neural organization. In: Bach-Y-Rita P, Collins CC, Hyde JE (eds) The control of eye movements. Academic Press, New York, pp 519–538

    Google Scholar 

  • Schaefer KP, Meyer DL (1981) Aspects of vestibular compensation in Guinea pigs. In: Floher H, Precht W (eds) Lesioninduced neuronal plasticity in sensorimotor systems. Springer, Berlin, Heidelberg, New York, pp 197–207

    Google Scholar 

  • Shimazu H, Smith CM (1971) Cerebellar and labyrinthine influences on single vestibular neurons identified by natural stimuli. J Neurophysiol 34: 493–508

    Google Scholar 

  • Snider RS, Stowell A (1944) Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J Neurophysiol 7: 331–357

    Google Scholar 

  • Suzuki DA, Noda H, Kase M (1981) Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol 46: 1120–1139

    Google Scholar 

  • Thach WT (1972) Cerebellar output: properties, synthesis and uses. Brain Res 40: 89–97

    Google Scholar 

  • Young LR, Forster JD, Van Houtte N (1968) A revised stochastic sampled data model for eye tracking movements. In: Fourth Annual NASA — University Conference on Manual Control. University of Michigan, Ann Arbor, MI, pp 489–508

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by NIH Grant 5 RO1 EY0380-03, NSF Grant BNS-8107111, and the Smith-Kettlewell Eye Research Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D.A., Keller, E.L. Vestibular signals in the posterior vermis of the alert monkey cerebellum. Exp Brain Res 47, 145–147 (1982). https://doi.org/10.1007/BF00235896

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235896

Key words

Navigation