Skip to main content
Log in

Molecular characteristics of glutamate receptors in the mammalian brain

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The strong excitatory activity of L-glutamic acid on central nervous system neurons is thought to be produced by interaction of this amino acid with specific neuronal plasma membrane receptors. The binding of L-glutamate to these surface receptors brings about an increase in membrane permeability to Na+ and Ca2+ ions presumably through direct activation of ion channels linked to the membrane receptors. The studies described in this paper represent attempts to define the subcellular distribution and pharmacological properties of the recognition site for L-glutamic acid in brain neuronal preparations, to isolate and explore the molecular characteristics of the receptor recognition site, and, finally, to demonstrate the activation of Na+ channels in synaptic membranes following the interaction of glutamate with its receptors.

Radioligand binding assays with L-[3H] glutamic acid have been used to demonstrate a relative enrichment of these glutamate recognition sites in isolated synaptic plasma membranes. The specific binding of L-[3H] glutamate to these membrane sites exhibits rapid association and dissociation kinetics and rather complex equilibrium binding kinetics. The glutamate binding macromolecule from synaptic membranes has been solubilized and purified and was shown to be a small molecular weight glycoprotein (MT ≈ 13 000). This protein tends to form aggregates which have higher specific activity at low concentrations of glutamate than the MT 13 000 protein has. The overall affinity of the purified protein is lower than that of the high affinity sites in the membrane. Nevertheless, the purified protein exhibits pharmacological characteristics very similar to those of the membrane binding sites. On the basis of its pharmacological properties this protein belongs in the category of the physiologic ‘glutamate preferring’ receptors.

By means of differential solubilization of membrane proteins with Na-cholate, it was shown that this recognition site is an intrinsic synaptic membrane protein whose binding activity is enhanced rather than diminished by cholate extraction of the synaptic membranes. The role of membrane constituents in regulating the binding activity of this protein has been explored and a possible modulation of glutamate binding by membrane gangliosides has been demonstrated. Finally, this glutamate binding glycoprotein is a metalloprotein whose activity is dependent on the integrity of its metallic (Fe) center. This is a clear distinguishing characteristic of this protein vis-à-vis the glutamate transport carriers.

The presence of functional glutamate receptors in synaptosomes and resealed synaptic plasma membranes has also been documented by the demonstration of glutamate-activated Na+ flux across the membrane of these preparations. The bidirectionality, temperature independence, and apparent desensitization of this stimulated flux following exposure to high concentrations of glutamate are properties indicative of a receptor-initiated ion channel activation. It would appear, then, that the synaptic membrane preparations provide a very useful system for the study of both recognition and effector function of the glutamate receptor complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis, D. R. & Watkins, J. C., 1960. J. Neurochem. 6: 117–141.

    Google Scholar 

  2. Krnjevic, K., 1974. Physiol. Rev. 54: 418–540.

    Google Scholar 

  3. Curtis, D. R. & Johnston, G. A. R., 1974. Ergebn. Physiol. 69:97–188.

    Google Scholar 

  4. Curtis, D. R. & Watkins, J. C., 1961. Nature 191: 1010–1011.

    Google Scholar 

  5. Coombs, J. S., Eccles, J. C. & Fatt, P., 1955. J. Physiol. (Lond.) 130: 326–373.

    Google Scholar 

  6. Michaelis, E. K., Michaelis, M. L. & Boyarsky, L. L., 1974. Biochim. Biophys. Acta 367: 338–348.

    Google Scholar 

  7. Roberts, P. J., 1974. Nature 252: 399–401.

    Google Scholar 

  8. Lunt, G. G., 1973. Comp. Gen. Pharmacol. 4: 75–79.

    Google Scholar 

  9. DeRobertis, E. & Fiszer dePlazas, S., 1976. J. Neurochem. 26: 1237–1243.

    Google Scholar 

  10. Simon, J. R., Contrera, J. F. & Kuhar, M. J., 1976. J. Neurochem. 26: 141–147.

    Google Scholar 

  11. Fiszer dePlazas, S. & DeRobertis, E., 1976. J. Neurochem. 27: 889–894.

    Google Scholar 

  12. Fonnum, F., 1968. Biochem. J. 106: 401–412.

    Google Scholar 

  13. Reyes, E. & Barela, T. D., 1980. Neurochem. Res. 5: 159–170.

    Google Scholar 

  14. Stephani, R. A., Rowe, W. B., Gass, J. D. & Meister, A., 1972. Biochemistry 11: 4094–4100.

    Google Scholar 

  15. Logan, W. J. & Snyder, S. H., 1972. Brain Res. 42: 413–421.

    Google Scholar 

  16. Kanner, B. I. & Sharon, L. Biochemistry 17: 3949–3953.

  17. Takeuchi, A. & Onodera, K., 1973. Nature New Biol. 242: 124–126.

    Google Scholar 

  18. Onodera, K. & Takeuchi, A., 1976. J. Physiol. (Lond.) 252: 295–318.

    Google Scholar 

  19. Michaelis, E. K., 1979. Biochem. Biophys. Res. Commun. 87: 106–113.

    Google Scholar 

  20. Foster, A. C. & Roberts, P. J., 1978. J. Neurochem. 34: 1467–1477.

    Google Scholar 

  21. Michaelis, E. K., 1975. Biochem. Biophys. Res. Commun. 65: 1004–1012.

    Google Scholar 

  22. Chang, H. H. & Michaelis, E. K., 1980. J. Biol. Chem. 255: 2411–2417.

    Google Scholar 

  23. Williams, L. T. & Lefkowitz, R. J., 1977. J. Biol. Chem. 252: 7207–7213.

    Google Scholar 

  24. Shank, R. P. & Freeman, A. R., 1975. J. Neurobiol. 6: 289–303.

    Google Scholar 

  25. Freeman, A. R., 1976. Progr. Neurobiol. 6: 137–153.

    Google Scholar 

  26. Davies, J. & Watkins, J. C., 1979. J. Physiol. (Lond.) 297, 621–635.

    Google Scholar 

  27. Davies, J. & Watkins, J. C., 1977. Brain Res. 59: 311–322.

    Google Scholar 

  28. Takeuchi, A. & Takeuchi, N., 1965. J. Physiol. (Lond.) 177: 225–238.

    Google Scholar 

  29. Usherwood, P. N. R. & Machili, P., 1968. J. Exp. Biol. 49: 341–361.

    Google Scholar 

  30. Usherwood, P. N. R. & Machili, P., 1966. Nature 210: 634–636.

    Google Scholar 

  31. Ozeki, M., Freeman, A. R. & Grundfest, H., 1966. J. Gen. Physiol. 49: 1319–1334.

    Google Scholar 

  32. Curtis, D. R., Duggan, A. W., Felix, D., Johnston, G. A. R., Tebecis, A. K. & Watkins, J. C., 1972. Brain Res. 41: 283–301.

    Google Scholar 

  33. Kaplan, D. M. & Criddle, R. S., 1971. Physiol. Rev. 51: 249–272.

    Google Scholar 

  34. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  35. Bartlett, G. R., 1959. J. Biol. Chem. 234: 466–468.

    Google Scholar 

  36. Hammond, K. S. & Papermaster, D. S., 1976. Anal. Biochem. 74: 292–297.

    Google Scholar 

  37. Michaelis, E. K., Michaelis, M. L. & Grubbs, R. D., 1980. FEBS Lett. 118: 55–57.

    Google Scholar 

  38. Svennerholm, L. & Fredman, P., 1980. Biochem. Biophys. Acta 617: 97–109.

    Google Scholar 

  39. Smith, A. P. & Loh, H. H., 1979. Life Sciences 24: 1–20.

    Google Scholar 

  40. Bohlen, P., Stein, S., Dairman, W. & Udenfriend, S., 1973. Arch. Biochem. Biophys. 155: 213–220.

    Google Scholar 

  41. Bradford, M., 1976. Anal. Biochem. 72: 248–254.

    Google Scholar 

  42. Biscoe, T. J., Evans, R. H., Headly, P. M., Martin, M. R. & Watkins, J. C., 1976. Br. J. Pharmacol. 58: 373–382.

    Google Scholar 

  43. Crane, F. L., MacKellar, W. C., Morre, D. J., Ramasarma, T., Goldenberg, H., Grebing, C. & Law, H., 1980. Biochern. Biophys. Res. Comm. 93: 746–754.

    Google Scholar 

  44. Crane, F. L. & Low, H., 1976. FEBS Lett. 68: 153–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, E.K., Michaelis, M.L., Chang, H.H. et al. Molecular characteristics of glutamate receptors in the mammalian brain. Mol Cell Biochem 38, 163–179 (1981). https://doi.org/10.1007/BF00235694

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235694

Keywords

Navigation