Skip to main content
Log in

Reactions of olfactory bulb neurons to different stimulus intensities in laboratory mice

  • Regular Papers
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The activity of 219 cells in the olfactory bulb of waking, freely breathing mice was analysed, and it was found that their spontaneous discharge rate varied between 0.3 and 33 AP/s. Both butyric acid and geraniol elicited responses of four types: 38% of the 98 responses were of type 1 (excitation), 43% of type 2 (inhibition), 10% of type 3 (complex structure), and 8% were characterized by a change in the temporal pattern of the activity. Response duration varied from less than 500 ms to more than 1 min. 52 secondary neurons were stimulated with four different concentrations of the odor substances. All of the responsive cells showed a clear ability to discriminate concentration. That is, response magnitude varied with intensity, producing non-monotonie curves. Most of the neurons responded only in a region of a more or less limited concentration, and in no case was a saturation curve observed. Approx. 40% of the neurons responded to the lowest concentration tested (10−8 vol. % of butyric acid or geraniol). The strongest stimuli, 10−2 vol.%, were relatively ineffective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian ED (1950) The electrical activity of the mammalian olfactory bulb. EEG Clin Neurophysiol 2: 377–388

    Google Scholar 

  • Andres KH (1975) Neue morphologische Grundlagen zur Physiologie des Riechens und Schmeckens. Arch Oto-Rhino-Laryng 210: 1–41

    Google Scholar 

  • Bretting H (1972) Die Bestimmung der Riechschwellen bei Igeln (Erinaceus europaeus L.) für einige Fettsäuren. Z Säugetierkde 37: 286–311

    Google Scholar 

  • Brown K (1979) Chemical communication between animals. In: Brown K, Cooper SJ (eds) Chemical influences on behaviour. Academic Press, London, pp 599–649

    Google Scholar 

  • Chaput M, Holley A (1979) Spontaneous activity of olfactory bulb neurones in awake rabbits with some observations on the effects of pentobarbital anaesthesia. J Physiol Paris 75: 939–949

    Google Scholar 

  • Daval G, Leveteau J (1982) Réponses unitaires des cellules mitrales du bulbe olfactifs de lapin à une stimulation odorante d'intensité variable. C R Acad Sc Paris 295: 637–640

    Google Scholar 

  • Døving KB (1964) Studies of the relation between the frog's electroolfactogram (EOG) and single unit activity in the olfactory bulb. Acta Physiol Scand 60: 150–164

    Google Scholar 

  • Duchamp A (1982) Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. A comparison with receptor cells. Chem Senses 7: 191–210

    Google Scholar 

  • Epple G (1976) Chemical communication and reproductive processes in nonhuman primates. In: Doty RL (ed) Mammalian reproductive processes and behavior. Academic Press, New York, pp 257–282

    Google Scholar 

  • Getchell TV, Shepherd GM (1975) Synaptic actions on mitral and tufted cells elicited by olfactory nerve volleys in the rabbit. J Physiol London 251: 497–522

    Google Scholar 

  • Holley A, Duchamp A, Revial MF, Juge A, MacLeod P (1974) Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data. Ann N Y Acad Sci 237: 102–114

    Google Scholar 

  • Kafka WA (1970) Molekulare Wechselwirkungen bei der Erregung einzelner Riechschwellen. Z Vergl Physiol 70: 105–143

    Google Scholar 

  • Kauer JS (1974) Response patterns of amphibian olfactory bulb neurons to odour stimulation. J Physiol London 243: 695–715

    Google Scholar 

  • Kauer JS (1977) Odor processing mechanisms in the salamander olfactory bulb. In: Le Magnen J, MacLeod P (eds) Olfaction and taste, VI. Information Retrieval Ltd, London, pp 125–133

    Google Scholar 

  • Kauer JS, Shepherd GM (1975) Mechanisms for processing of odour concentration in salamander olfactory bulb neurones. J Physiol London 252: 49P-50P

    Google Scholar 

  • Luskin MB, Price JL (1982) The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. J Comp Neurol 209: 249–263

    Google Scholar 

  • Macrides F, Chorover SL (1972) Olfactory bulb units: activity correlated with inhalation cycles and odour quality. Science 175: 84–87

    Google Scholar 

  • Mair RG (1982) Response properties of rat olfactory bulb neurons. J Physiol London 326: 341–360

    Google Scholar 

  • Mathews DF (1972) Response patterns of single units in the olfactory bulb of the rat to odor. Brain Res 47: 389–400

    Google Scholar 

  • Mori K, Kishi K, Ojima H (1983) Distribution of dendrites of mitral, displaced mitral, tufted and granule cells in the rabbit olfactory bulb. J Comp Neurol 219: 339–355

    Google Scholar 

  • Moulton DG, Tucker D (1964) Electrophysiology of the olfactory system. Ann N Y Acad Sci 116: 380–428

    Google Scholar 

  • Neuhaus W (1953) Über die Riechschärfe des Hundes für Fettsäuren. Z Vergl Physiol 35: 527–552

    Google Scholar 

  • Nicoll RA (1972) The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol London 223: 803–814

    Google Scholar 

  • Pager J (1980) Une modulation respiratoire centrifuge mise en évidence dans le bulbe olfactif du rat. C R Acad Sci Paris 290: 251–254

    Google Scholar 

  • Potter H, Chorover SL (1976) Response plasticity in hamster olfactory bulb: peripheral and central processes. Brain Res 116: 417–429

    Google Scholar 

  • Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14: 44–56

    Google Scholar 

  • Ritter FJ (1979) Chemical ecology: odour communication in animals. Elsevier, Amsterdam

    Google Scholar 

  • Schäfer HJ (1983) Elektrophysiologische Untersuchungen zur ontogenetischen Entwicklung der olfaktorischen Sekundärneurone bei der Labormaus. Dissertation, Bonn

  • Schäfer HJ, Schmidt U (1985) Ontogenetic development of secondary neurons in the olfactory bulb of laboratory mice. J Comp Physiol A 157: 789–796

    Google Scholar 

  • Schmidt C (1982) Behavioural and neurophysiological studies of the olfactory sensitivity in the albino mice. Z Säugetierkde 47: 162–168

    Google Scholar 

  • Scholfield CN (1978) A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex. J Physiol London 275: 559–566

    Google Scholar 

  • Shepherd GM (1972) Synaptic organization of the mammalian olfactory bulb. Physiol Rev 52: 864–917

    Google Scholar 

  • Stewart WB, Scott JW (1976) Anaesthetic-dependent field potential interactions in the olfactory bulb. Brain Res 103: 487–499

    Google Scholar 

  • Yamaguchi K, Ueda K (1984) Rhythmic discharge of mitral cells in the carp olfactory bulb. Brain Res 322: 378–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The work was supported by the Deutsche Forschungsgemeinschaft (Schm 322/7).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinken, U., Schmidt, U. Reactions of olfactory bulb neurons to different stimulus intensities in laboratory mice. Exp Brain Res 63, 151–157 (1986). https://doi.org/10.1007/BF00235657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235657

Key words

Navigation