Skip to main content
Log in

Origin of the afferent connections to the parolfactory lobe in quail shown by retrograde labelling with a fluorescent neuron tracer

  • Regular Papers
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Unilateral injection of Fast Blue retrograde fluorescent neuron tracer into the parolfactory lobe (POL) in the quail showed multiple innervation of this structure. Neurons projecting into the POL were located in three areas: 1) the telencephalon, where they were scattered in the paleostriatum, the archistriatum and ventral hyperstriatum, and among the fibers of different tracts including the anterior commissure, the occipito-mesencephalic tract and the fasciculus prosencephali lateralis; 2) the diencephalon, where fluorescent neurons with large multipolar perikarya were found in the dorsal thalamic wall; 3) the midbrain, where large perikarya were located in the ventralis area of Tsai, the locus coeruleus, the nucleus subcoeruleus, around the medial longitudinal fasciculus, in the substantia grisea centralis, the formatio reticularis mesencephali and among the fibers of the brachium conjunctivum. In most cases, axons innervating the POL ran parallel to the fibers of the medial forebrain bundle and contralateral to the perikarya from which they originated. This study also showed that the anterior and posterior parts of the POL received fibres from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, 2 Vols. Macmillan, New York (Reprinted in 1960 by Hafner, New York in 3 Vols)

    Google Scholar 

  • Baylé JD, Ramade F, Oliver J (1974) Stereotaxic topography of the brain of the quail, Coturnix coturnix japonica. J Physiol (Paris) 68: 219–241

    Google Scholar 

  • Benoît J (1964) The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck. Ann NY Acad Sci 117: 204–217

    Google Scholar 

  • Benoît J (1970) Etude de l'action des radiations visibles sur la gonadostimulation et leur pénétration ultra-crânienne chez les oiseaux et les mammifères. Benoît J, Assenmacher I (eds) CNRS, Paris 121–149

    Google Scholar 

  • Benoît J, Kehl R (1939) Nouvelles recherches sur les voies nerveuses photoréceptrices et hypophysostimulantes chez le Canard domestique. CR Soc Biol (Paris) 131: 89–93

    Google Scholar 

  • Benowitz LI, Karten HJ (1976) The tractus infundibuli and other afferents to the parahippocampal region of the pigeon. Brain Res 102: 174–180

    Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Dann O (1979) Fluorescent retrograde neuronal labeling in rat by means of substances binding specifically to adenine-thymine rich DNA. Neurosci Lett 12: 235–240

    Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett 18: 25–30

    Google Scholar 

  • Bertler A, Falk B, Gottfried CG, Ljunggren L, Rosengren E (1964) Some observations on adrenergic connections between mesencephalon and cerebral hemispheres. Acta Pharmacol 21: 283–289

    Google Scholar 

  • Bons N (1976) Retino-hypothalamic pathway in the duck, Anas platyrhynchos. Cell Tiss Res 168: 343–360

    Google Scholar 

  • Bons N, Jallageas M, Alonso G (1984) Hypothalamic neurohormones in birds: LHRH, vasotocin and mesotocin systems. Abstr 3rd Int Symp on Avian Endocrinology, New Brunswick-New Jersey 25–26 juin 1984

  • Bons N, Jallageas M, Assenmacher I (1975) Influence des photorécepteurs rétiniens et extrarétiniens dans la stimulation testiculaire de la caille par des jours longs. J Physiol (Paris) 71: 265–266 A

    Google Scholar 

  • Bons N, Kerdelhué B, Assenmacher I (1978) Mise en évidence d'un deuxième système neurosécrétoire à LH-RH dans l'hypothalamus du canard. CR Acad Sci (Paris) 287: 145–148

    Google Scholar 

  • Bons N, Oliver J (1984) Afférences aux lobes paraolfactifs chez la caille: étude à l'aide d'un traceur fluorescent. Ann d'Endocr (Paris) 45: 16N

  • Cooper ML, Pickard GE, Silver R (1983) Retinohypothalamic pathway in the dove demonstrated by anterograde HRP. Brain Res Bull 10: 715–718

    Google Scholar 

  • Davies DT (1980) The neuroendocrine control of gonadotrophin release in the Japanese quail. III. The role of the tuberal and anterior hypothalamus in the control of ovarian development and ovulation. Proc R Soc (Lond) 206: 421–437

    Google Scholar 

  • Davies DT, Follet BK (1980) Neuroendocrine regulation of gonadotrophin-releasing hormone secretion in the Japanese quail. Gen Comp Endocr 40: 220–225

    Google Scholar 

  • Foster RG, Follet BK, Lythgoe JN (1985) Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail. Nature 313: 50–52

    Google Scholar 

  • Glass JD, Lauber JK (1981) Sites and action spectra for encephalic photoreception in the Japanese quail. Am J Physiol 240: 220–228

    Google Scholar 

  • Gwinner E, Turek FW, Smith SO (1971) Extraocular light perception in photoperiodic responses of the white-crowned sparrow (Zonotrichia leucophrys) and of golden-crowned sparrow (Z. atricapllla). Z Vergl Physiol 75: 323–331

    Google Scholar 

  • Harrison PC (1972) Extraretinal photocontrol of reproductive responses of leghorn hens to photoperiods of different length and spectrum. Poultry Sci 51: 2060–2064

    Google Scholar 

  • Hartwig HG (1974) Electron microscopic evidence for a retinohypothalamic projection to the suprachiasmatic nucleus of Passer domesticus. Cell Tiss Res 147: 491–504

    Google Scholar 

  • Homma K, Sakakibara Y (1971) Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. In: Menaker M (ed) Biochronometry. Natl Acad Sci, Washington, pp 333–341

    Google Scholar 

  • Homma K, Sakakibara Y, Ohta M (1977) Potential sites and action spectra for encephalic photoreception in the Japanese quail. In: Follett BK (ed) First Internat Symp Avian Endocrinology, Calcutta. Abstr 25–26

  • Homma K, Wilson WO, Siopes TD (1972) Eyes have a role in photoperiodic control of sexual activity of Coturnix. Science 178: 421–423

    Google Scholar 

  • Illing RB (1980) Axonal bifurcation of cat retinal ganglion cells as demonstrated by retrograde double labeling with fluorescent dyes. Neurosci Lett 19: 125–130

    Google Scholar 

  • Karten HJ, Dubbeldam JL (1973) The organization and projections of the palaeostriatal complex in the pigeon (Columbia livia) J Comp Neurol 148: 61–90

    Google Scholar 

  • Jallageas M, Bons N, Daniel JY, Assenmacher I (1978) The endocrine control of the reproductive cycle in male ducks. Pavo 16: 67–88

    Google Scholar 

  • Karten HJ, Hodos W (1967) A Stereotaxic atlas of the brain of the pigeon (Columbia livia). The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Kato M, Kato Y, Oishi T (1967) Radioluminous paints as activator of photoreceptor system studied with swallow-tail butterfly and quail. Proc Jpn Acad 43: 220–223

    Google Scholar 

  • Kuypers HGJM, Catsman-Berrevoets CE, Padt RE (1977) Retrograde axonal transport of fluorescent substances in the rat's brain. Neurosci Lett 6: 127–135

    Google Scholar 

  • McMillan JP, Underwood HA, Elliott JA, Stetson MH, Menaker M (1975) Extraretical light photoreception in the sparrow. IV. Further evidence that the eyes do not participate in photoperiodic photoreception. J Comp Physiol 97: 205–213

    Google Scholar 

  • McNeill TH, Kozlowski GP, Abel JH Jr, Zimmerman EA (1976) Neurosecretory pathways in the mallard duck (Anas platyrhynchos) brain: localization by aldehyde fuchsin and immuniperoxidase techniques for neurophysin NP and gonadotropin releasing hormone (Gn-RH). Endocrinology 99: 1323–1332

    Google Scholar 

  • Menaker M (1971) Rhythms, reproduction, and photoreception. Biol Reprod 4: 295–308

    Google Scholar 

  • Menaker M, Roberts R, Eliott J, Underwood H (1970) Extraretinal light perception in the sparrow. III. The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci USA 67: 320–325

    Google Scholar 

  • Menaker M, Underwood H (1976) Extraretinal photoreception in birds. Photochem Photobiol 23: 299–306

    Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165: 457–486

    Google Scholar 

  • Oishi T, Lauber JK (1973) Photoreception in the photosexual response of quail. I. Site of photoreceptor. Am J Physiol 225: 155–158. II. Effects of intensity and wavelength. Am J Physiol 225: 880–886

    Google Scholar 

  • Oliver J, Baylé JD (1982) Brain photoreceptors for the photo-induced testicular response in birds. Experientia 38: 1021–1029

    Google Scholar 

  • Oliver J, Bouillé C, Herbuté S, Baylé JD (1977) Horseradish peroxidase study of intact or deafferented infundibular complex in Coturnix quail. Neuroscience 2: 989–996

    Google Scholar 

  • Ookawa T (1970) Effets of bilateral optic enucleation on body growth and gonads in young male chicks. Poultry Sci 49: 333–334

    Google Scholar 

  • Shimizu I, Yoshimoto M, Kojima T, Okado N (1984) Development of retinohypothalamic projections in the chick embryo. Neurosci Lett 50: 43–47

    Google Scholar 

  • Sicard B (1982) La photo-gonado-stimulation chez la Caille. Etude de la photoréactivité cérébrale. Thèse Montpellier, pp 103

  • Spatz WB, Grabig S (1983) Reduced fading of fast blue in the brain of the guinea-pig by treatment with sodium-nitroprusside. Neurosci Lett 38: 1–4

    Google Scholar 

  • Sterling RJ, Sharp PJ (1982) The localization of LHRH neurones in the diencephalon of the domestic hen. Cell Tiss Res 222: 283–298

    Google Scholar 

  • Stetson MH (1972) Hypothalamic regulation of testicular function in Japanese quail. Z Zellforsch 130: 389–410

    Google Scholar 

  • Turek FK (1975) Extraretinal photoreception during the gonadal photoreceptory period in the golden-crowned sparrow. J Comp Physiol 96: 27–36

    Google Scholar 

  • Underwood H (1975) Retinally perceived photoperiod does not influence subsequent testicular regression in house sparrows. Gen Comp Endocr 27: 475–478

    Google Scholar 

  • Underwood H, Menaker M (1970) Photoreception in sparrows. Science 172: 293

    Google Scholar 

  • Wada M (1974) Blockade of photoperiodically-induced testicular growth by hypothalamic deafferentation in Japanese quail (Coturnix coturnix japonica). Gen Comp Endocr 24: 113–120

    Google Scholar 

  • Wilson FE (1967) The tubero-infundibular neurosystem: a component of the photoperiodic control mechanism of the whitecrowned sparrow, Zonotrichia leucophrys gambelii. Z Zellforsch 82: 1–24

    Google Scholar 

  • Yokoyama K, Oksche A, Darden JR, Farner DS (1978) The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the white-crowned sparrow (Zonotrichia leucophrys gambelii). Cell Tiss Res 189: 441–467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bons, N., Oliver, J. Origin of the afferent connections to the parolfactory lobe in quail shown by retrograde labelling with a fluorescent neuron tracer. Exp Brain Res 63, 125–134 (1986). https://doi.org/10.1007/BF00235654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235654

Key words

Navigation