Skip to main content
Log in

Sodium channel functioning based on an octagonal structure model

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The complete amino acid sequence of a sodium channel from squid Loligo bleekeri has been deduced by cloning and sequence analysis of the complementary DNA. A unique feature of the squid sodium channel is the 1,522 residue sequence, approximately three-fourths of those of the rat sodium channels I, II and III. On the basis of the sequence, and in comparison with those of vertebrate sodium channels, we have proposed a tertiary structure model of the sodium channel where the transmembrane segments are octagonally aligned and the four linkers of S5–6 between segments S5 and S6 play a crucial role in the activation gate, voltage sensor and ion selective pore, which can slide, depending on membrane potentials, along inner walls consisting of alternating segments S2 and S4. The proposed octagonal structure model is contrasted with that of Noda et al. (Nature 320; 188–192, 1986). The octagonal structure model can explain the gating of activation and inactivation, and ion selectivity, as well as the action mechanism of both tetrodotoxin (TTX) and α-scorpion toxin (ScTX), and can be applied not only to the sodium channel, but also to the calcium channel, potassium channel and cGMP-gated channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P.A.V. 1987. Properties and pharmacology of a TTXinsensitive Na+ current in neurones of the jellyfish Cyanea capillata. J. Exp. Biol. 133:231–248

    Google Scholar 

  • Anderson, P.A.V., Holman, M.A., Greenberg, R.M. 1993. Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc. Natl. Acad. Sci. USA 90:7419–7423

    Google Scholar 

  • Armstrong, C.M., Bezanilla, F. 1974. Charge movement associated with the opening and closing of the activation gates of the Na channels. J. Gen. Physiol. 63:533–552

    Google Scholar 

  • Armstrong, C.M., Bezanilla, F. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:567–590

    Google Scholar 

  • Auld, V.J., Goldin, A.L., Krafte, D.S., Catterall, W.A., Lester, H.A., Davidson, N., Dunn, R.J. 1990. A neutral amino acid change in segment IIS4 dramatically alters the gating properties of the voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA 87:323–327

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Ridgway, E.B. 1971. Depolarization and calcium entry in squid giant axons. J. Physiol. 218:709–755

    Google Scholar 

  • Bezanilla, F., Armstrong, C.M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60:588–608

    Google Scholar 

  • Bezanilla, F. 1985. Gating of sodium and potassium channels. J. Membrane Biol. 88:97–111

    Google Scholar 

  • Biel, M., Altenhofen, W., Hullin, R., Ludwig, J., Freichel, M., Flockerzi, V., Dascal, N., Kaupp, U.B., Hofmann, F. 1993. Primary structure and functional expression of a cyclic nucleotide-gated channel from rabbit aorta. FEBS Lett. 329:134–138

    Google Scholar 

  • Butler, A., Wei, A., Baker, K., Salkoff, L. 1989. A family of putative potassium channel genes in Drosophila. Science 243:943–947

    Google Scholar 

  • Catterall, W.A., 1979. Binding of scorpion toxin to receptor sites associated with sodium channels in frog muscle. Correlation of voltage-dependent binding with activation. J. Gen. Physiol. 74:375–391

    Google Scholar 

  • Catterall, W.A., Beneski, D.A. 1981. Biochemical and allosteric properties of neurotoxin receptor site associated with voltage-sensitive sodium channels, in Nerve membrane. In: Biochemistry and function of channel proteins. G. Matsumoto, M. Kotani, editors, pp. 3–11. The University of Tokyo, Tokyo

    Google Scholar 

  • Catterall, W.A. 1986. Voltage-dependent gating of sodium channels: correlating structure and function. TINS 9:7–10

    Google Scholar 

  • Chabala, L.D., Urban, B.W., Weiss, L.B., Green, W.N., Andersen, O.S. 1991. Steady-state gating of batrachotoxin-modified sodium channels. Variability and electrolyte-dependent modulation. J. Gen. Physiol. 98:197–224

    Google Scholar 

  • Chirgwin, J.M., Przybyla, A.E., MacDonald, R.J., Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    CAS  PubMed  Google Scholar 

  • Conn, E.E., Stump, K.P., Bruening, G., Doi, R.H. 1987. Outlines of biochemistry, Fifth edition. John Wiley & Sons, New York

    Google Scholar 

  • Dhallan, R.S., Yau, K.-W., Schrader, K.A., Reed, R.R. 1990. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–187

    CAS  PubMed  Google Scholar 

  • Durell, S.R., Guy, H.R. 1992. Atomic scale structure and functional models of voltage-gated potassium channels. Biophys. J. 62:238–250

    Google Scholar 

  • Frech, G.C., VanDongen, A.M.J., Schuster, G., Brown, A.M., Joho, R.H. 1989. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340:642–645

    Article  CAS  PubMed  Google Scholar 

  • French, R.J., Wells, J.B. 1977. Sodium ions as blocking agents and charge carriers in the potassium channel of the squid giant axon. J. Gen. Physiol. 70:707–724

    Google Scholar 

  • Gellens, M.E., George, A.L., Jr., Chen, L., Chahine, M., Horn, R., Barchi, R.L., Kallen, R.G. 1992. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltagedependent sodium channel. Proc. Natl. Acad. Sci. USA 89:554–558

    Google Scholar 

  • Guy, H.R., Seetharamulu, P. 1986. Molecular model of the action potential sodium channel. Proc. Natl. Acad. Sci. USA 83:508–512

    Google Scholar 

  • Heinemann, S.H., Terlau, H., Stühmer, W., Imoto, K., Numa, S. 1992. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443

    Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes, Second edition. Sinauer, Sunderland, MA

    Google Scholar 

  • Hironaka, T., Narahashi, T. 1977. Cation permeability ratio of sodium channels in normal and grayanotoxin-treated squid axon membranes. J. Membrane Biol. 31:359–381

    Google Scholar 

  • Ho, K., Nichols, C.G., Lederer, W.J., Lytton, J., Vassilev, P.M., Kanazirska, M.V., Hebert, S.C. 1993. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362:31–38

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544

    CAS  PubMed  Google Scholar 

  • Hubbard, S.C., Ivatt, R.J. 1981. Synthesis and processing of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 50:555–583

    Google Scholar 

  • Ichikawa, M., Urayama, M., Matsumoto, G. 1991. Anticalmodulin drugs block the sodium gating current of squid giant axons. J. Membrane Biol. 120:211–222

    Google Scholar 

  • Ito, H., Morton, T.H., Vodyanoy, V. 1989. Small odorant molecules affect steady state properties of monolayers. Thin solid Films 180:1–13

    Google Scholar 

  • Jan, L.Y., Jan, Y.N. 1990. A superfamily of ion channels. Nature 345:672

    Google Scholar 

  • Kaupp, U.B., Niidome, T., Tanabe, T., Terada, S., Bönigk, W., Stühmer, W., Cook, N.J., Kangawa, K., Matsuo, H., Hirose, T., Miyata, T., Numa, S. 1989. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMPgated channel. Nature 342:762–766

    Google Scholar 

  • Kayano, T., Noda, M., Flockerzi, V., Takahashi, H., Numa, S. 1988. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 228:187–194

    Google Scholar 

  • Keynes, R.D., Greeff, N.G., Forster, I.C., Bekkers, J.M. 1991. The effect of tetrodotoxin on the sodium gating current in the squid giant axon. Proc. R. Soc. Lond. B 246:135–140

    Google Scholar 

  • Khodorov, B.I. 1978. Chemicals as tools to study nerve fiber sodium channels; effects of batrachotoxin and some anesthetics. In: Membrane Transport Processes. D.C. Tosteson, Y.A. Ovchirrikov, R. Latorre. editors. Raven, New York

    Google Scholar 

  • Kim, M.-S., Morii, T., Sun, L.-X., Imoto, K., Mori, Y. 1993. Structural determinants of ion selectivity in brain calcium channel. FEBS Lett. 318:145–148

    Google Scholar 

  • Krapivinsky, G., Gordon, E.A., Wickman, K., Velimirović, B., Krapivinsky, L., Clapham, D.E., 1995. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature 374:135–141

    Google Scholar 

  • Kubo, Y., Baldwin, T.J., Jan, Y.N., Jan, L.Y. 1993a. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133

    Google Scholar 

  • Kubo, Y., Reuveny, E., Slesinger, P.A., Jan, Y.N., Jan, L.Y. 1993b. Primary structure, functional expression of a rat G-proteincoupled muscarinic potassium channel. Nature 364:802–806

    Google Scholar 

  • Kyte, J., Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132

    Google Scholar 

  • Landowne, D. 1993. Measuring nerve excitation with polarized light. Jap. J. Physiol. 43:7–11

    Google Scholar 

  • Lehmann-Horn, F., Iaizzo, P.A., Hatt, H., Franke, Ch. 1991. Altered gating and conductance of Na+ channels in hyperkalemic periodic paralysis. Pfluegers Arch 418:297–299

    Google Scholar 

  • Lewin, B. 1994. The apparatus for nuclear splicing. In: Genes, V. pp. 911–940. Oxford University, Oxford

    Google Scholar 

  • Ludwig, J., Margalit, T., Eismann, E., Lancet, D., Kaupp, U.B. 1990. Primary structure of cAMP-gated channel from bovine olfactory epithelium. FEBS Lett. 270:24–29

    Google Scholar 

  • MacKinnon, R., Yellen, G. 1990. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250:276–279

    Google Scholar 

  • Mathur, R., Zheng, J., Yan, Y., Sigworth, F.J. 1995. Role of the S3-S4 linker in activation of Shaker K+ channels. Biophys. J. 68:A32

    Google Scholar 

  • McClatchey, A.I., Van den Bergh, P., Pericak-Vance, M.A., Raskind, W., Verellen, C., Mckenna-Yasek, D., Rao, K., Haines, J.L., Bird, T., Brown, R.H., Jr., Gusella, J.F. 1992. Temperature-sensitive mutations in the III–IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell 68:769–774

    Google Scholar 

  • McCormack, K., Tanouye, M.A., Iverson, L.E., Lin, J.-W., Ramaswami, M., McCormack, T., Campanelli, J.T., Mathew, M.K., Rudy, B. 1991. A role for hydrophobic residues in the voltagedependent gating of Shaker K+ channels. Proc. Natl. Acad. Sci. USA 88:2931–2935

    CAS  PubMed  Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340:230–233

    Google Scholar 

  • Miller, I.R. 1993. Mechanism of channel opening and closing: a hypothesis. Bioelectrochem. Bioenergetics 31:323–328

    Google Scholar 

  • Moorman, J.R., Kirsch, G.E., Brown, A.M., Joho, R.H. 1990. Changes in sodium channel gating produced by point mutations in a cytoplasmic linker. Science 250:688–691

    Google Scholar 

  • Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402

    Google Scholar 

  • Nakayama, H., Hatanaka, Y., Yoshida, E., Oka, K., Takanohashi, M., Amano, Y., Kanaoka, Y. 1992. Photolabeled sites with a tetrodotoxin derivative in the domain III and IV of the electroplax sodium channel. Biochem. Biophys. Res. Comm. 184:900–907

    Google Scholar 

  • Niidome, T., Kim, M.-S., Friedrich, T., Mori, Y. 1992. Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett. 308:7–13

    Google Scholar 

  • Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Google Scholar 

  • Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., Numa, S. 1986. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188–192

    Google Scholar 

  • Noda, M., Suzuki, H., Numa, S., Stühmer, W. 1989. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259:213–216

    Google Scholar 

  • Pittler, S.J., Lee, A.K., Altherr, M.R., Howard, T.A., Seldin, M.F., Hurwitz, R.L., Wasmuth, J.J., Baehr, W. 1992. Primary structure and chromosomal localization of human and mouse rod photoreceptor cGMP-gated cation channel. J. Biol. Chem. 267:6257–6262

    Google Scholar 

  • Planells-Cases, R., Ferrer-Montiel, A.V., Patten, C.D., Montal, M. 1995. The S2 and S3 transmembrane segments are additional components of the voltage sensor in voltage-gated potassium channels. Biophys. J. 68:A34

    Google Scholar 

  • Ptáček, L.J., George, A.L., Jr., Griggs, R.C., Tawil, R., Kallen, R.G., Barchi, R.L., Robertson, M., Leppert, M.F. 1991. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67:1021–1027

    Google Scholar 

  • Pusch, M., Noda, M., Stühmer, W., Numa, S., Conti, F. 1991. Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating. Eur. Biophys. J. 20:127–133

    Google Scholar 

  • Rogart, R.B., Cribbs, L.L., Muglia, L.K., Kephart, D.D., Kaiser, M.W. 1989. Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc. Natl. Acad. Sci. USA 86:8170–8174

    Google Scholar 

  • Rosenthal, J.J.C., Gilly, W.F. 1993. Amino acid sequence of a putative sodium channel expressed in the giant axon of the squid Loligo opalescens. Proc. Natl. Acad. Sci USA 90:10026–10030

    Google Scholar 

  • Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N. 1985. Enzymatic amplification of β- globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    CAS  PubMed  Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ifune, C., Goodman, R., Mandel, G. 1987. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science 237:744–749

    Google Scholar 

  • Satin, J., Kyle, J.W., Chen, M., Bell, P., Cribbs, L.L., Fozzard, H.A., Rogart, R.B. 1992. A mutant of TTX-resistant cardiac sodium channels with TTX-sensitive properties. Science 256:1202–1205

    Google Scholar 

  • Sato, C., Matsumoto, G. 1992a. Primary structure of squid sodium channel deduced from the complementary DNA sequence. Biochem. Biophys. Res. Comm. 186:61–68

    Google Scholar 

  • Sato, C., Matsumoto, G. 1992b. Proposed tertiary structure of the sodium channel. Biochem. Biophys. Res. Comm. 186:1158–1167

    Google Scholar 

  • Sato, C., Hirota, K., Matsumoto, G. 1995. Neuronal specificity of sub-type SQSC1 of squid putative sodium channel. Biochem. Biophys. Res. Comm. 206:807–813

    Google Scholar 

  • Stocker, M., Stühmer, W., Wittka, R., Wang, X., Müller, R., Ferrus, A., Pongs, O. 1990. Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels. Proc. Natl. Acad. Sci. USA 87:8903–8907

    Google Scholar 

  • Stühmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., Numa, S. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

    Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    Google Scholar 

  • Tang, S., Mikala, G., Bahinski, A., Yatani, A., Varadi, G., Schwartz, A. 1993. Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J. Biol. Chem. 268:13026–13029

    Google Scholar 

  • Tejedor, F.J., Catterall, W.A. 1988. Site of covalent attachment of α-scorpion toxin derivatives in domain I of the sodium channel α subunit. Proc. Natl Acad. Sci USA 85:8742–8746

    Google Scholar 

  • Tempel, B.L., Papazian, D.M., Schwarz, T.L., Jan, Y.N., Jan, L.Y. 1987. Sequence of a probable potassium channel component encoded at Shaker Locus of Drosophila. Science 237:770–775

    Google Scholar 

  • Tempel, B.L., Jan, Y.N., Jan, L.Y. 1988. Cloning of a probable potassium channel gene from mouse brain. Nature 332:837–839

    Google Scholar 

  • Terlau, H., Heinemann, S.H., Stühmer, W., Pusch, M., Conti, F., Imoto, K., Numa, S. 1991. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett. 293:93–96

    Google Scholar 

  • Thomsen, W.J., Catterall, W.A. 1989. Localization of the receptor site for α-scorpion toxins by antibody mapping: Implications for sodium channel topology. Proc. Natl. Acad. Sci. USA 86:10161–10165

    Google Scholar 

  • Triglia, T., Peterson, M.G., Kemp, D.J. 1988. A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16:8186

    Google Scholar 

  • Trimmer, J.S., Cooperman, S.S., Tomiko, S.A., Zhou, J., Crean, S.M., Boyle, M.B., Kallen, R.G., Sheng, Z., Barchi, R.L., Sigworth, F.J., Goodman, R.H., Agnew, W.S., Mandel, G. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

    Google Scholar 

  • Trimmer, J.S., Agnew, W.S. 1989. Molecular diversity of voltagesensitive Na channels. Annu. Rev. Physiol. 51:401–418

    Google Scholar 

  • Trudeau, M.C., Warmke, J.W., Ganetzky, B., Robertson, G.A. 1995. H-erg, a member of the eag family of K+ channels, encodes an inward rectifier. Biophys. J. 68:A32

    Google Scholar 

  • Tsuji, K., Kawanishi, T., Handa, S., Kamano, H., Iwasa, J., Seyama, I. 1991. Effect of structural modification of several groups on the D-ring of grayanotoxin on its depolarization potency in squid giant axon. J. Pharmacol. Exp. Ther. 257:788–794

    Google Scholar 

  • Tsukita, S., Tsukita, S., Kobayashi, T., Matsumoto, G. 1986. Subaxolemmal cytoskeleton in squid giant axon. II. Morphological identification of microtubule-and microfilament-associated domains of axolemma. J. Cell Biol. 102:1710–1725

    Google Scholar 

  • Vale, R.D., Schnapp, B.J., Reese, T.S., Sheetz, M.P. 1985. Movement of organelles along filaments dissociated from the axoplasm of the squid giant axon. Cell 40:449–454

    Google Scholar 

  • Vassilev, P.M., Scheuer, T., Catterall, W.A. 1988. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1661

    Google Scholar 

  • Warmke, J.W., Ganetzky, B. 1994. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA. 91:3438–3442

    Google Scholar 

  • Waugh, R.E., Hochmuth, R.M. 1987. Mechanical equilibrium of thick, hollow, liquid membrane cylinders. Biophys. J. 52:391–400

    Google Scholar 

  • Waugh, R.E., Song, J., Svetina, S., Žekš, B. 1992. Local and nonlocal curvature elasticity in bilayer membranes by tether formation from lecithin vesicles. Biophys. J. 61:974–982

    Google Scholar 

  • Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., Salkoff, L. 1990. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248:599–603

    Google Scholar 

  • West, J.W., Numann, R., Murphy, B.J., Scheuer, T., Catterall, W.A. 1991. A phosphorylation site in the Na+ channel required for modulation by protein kinase C. Science 254:866–868

    Google Scholar 

  • West, J.W., Patton, D.E., Scheuer, T., Wang, Y., Goldin, A.L., Catterall, W.A. 1992. A cluster of hydrophobic amino acid residues required for fast Na+-channel inactivation. Proc. Natl. Acad. Sci. USA. 89:10910–10914

    Google Scholar 

  • Yellen, G., Jurman, M.E., Abramson, T., MacKinnon, R. 1991. Mutations affecting internal TEA blockade identify the probable poreforming region of a K+ channel. Science 251:939–942

    Google Scholar 

  • Yokoyama, S., Imoto, K., Kawamura, T., Higashida, H., Iwabe, N., Miyata, T., Numa, S. 1989. Potassium channels from NG108–15 neuroblastoma-glioma hybrid cells. Primary structure and functional expression from cDNAs. FEBS Lett. 259:37–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to express our cordial acknowledgments to Dr. Hideo Tani (Kowa) and Drs. Masahiko Fujino and Haruo Onda (Takeda Pharmaceutical) for their kind support for us to utilize their experimental facilities for DNA cloning and as well as for their stimulating and helpful discussions. We also thank Drs. Toshio Iijima, Michinori Ichikawa, Kiyonori Hirota, Messrs. Tadashi Kimura and Osamu Shono and all our colleagues (Supermolecular Science Division, Electrotechnical Laboratory) for their kind support to collect and isolate optic lobes from live squid. We greatly thank Professors Takuji Takeuchi (University of Tohoku) and David Landowne (University of Miami) for their illuminating discussions and valuable comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, C., Matsumoto, G. Sodium channel functioning based on an octagonal structure model. J. Membarin Biol. 147, 45–70 (1995). https://doi.org/10.1007/BF00235397

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235397

Key words

Navigation