Skip to main content
Log in

The effect of growth retardants on anthocyanin production in carrot cell suspension cultures

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The effect of growth retardants on anthocyanin production was studied in wild carrot (Daucus carota) cell suspension cultures. Paclobutrazol [(2RS,3RS) — 1 — (4-chlorophenyl) — 4,4 —dimethyl-2-(1,2,4-triazol-1-yl) pentan-3-ol], uniconazole [(E)-1-(4-chlorophenyl-4,4 —) dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol], tetcyclacis [5-(4-chloro-phenyl) -3,4,5,9,10-pentaaza-tetracyclo-5, 4, 102,6, O8,11 — dodeca-3, 9-diene], ancymidol [α-cyclopropyl — 4 — methoxy-α(pyrimidine-5-yl)benzyl alcohol] and CCC (2-chloro-ethyltrimethylammonium chloride) increased anthocyanin accumulation. AMO-1618 [(2-isopropyl-5-methyl-4-trimethyl-ammonium-chloride)-phenyl-1-piperidinium carboxylate] did not increase anthocyanin accumulation in the first passage but did increase it during the second passage on medium for improved anthocyanin accumulation. Prohexadione (3,5-dioxo-4-propionylcyclohexane carboxylic acid) decreased anthocyanin accumulation by 10%–12.5%.

The inhibitory effect of gibberellin on anthocyanin accumulation was reversed by paclobutrazol. Paclobutrazol together with 10−6M GA3 increased anthocyanin level from 33% of control in GA3 treated cell suspension to 76%. These results are consistent growth retardants increasing anthocyanin accumulation in carrot cell suspension cultures by inhibiting gibberellin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belefant H, Fong F (1991) Plant Science 78:19–25

    Google Scholar 

  • Buchenauer H, Rohner ER (1981) Pestic Biochem Physiol 15:58–70

    Google Scholar 

  • Cheng CL, Wetherell DF, Dougall DK (1985) In: Neumann KH, Barz W, Reinhard E (eds) Metabolism of Plant Cell Cultures, Springer-Verlag, Berlin, pp 87–98

    Google Scholar 

  • Cormier F, Crevier HA, Do CB (1990) Can J Bot 68:1822–1825

    Google Scholar 

  • Dougall DK, Weyrauch KW (1980) Biotechnot Bioeng 22:337–352

    Google Scholar 

  • Dougall DK, Johnson JH, Whitten GH (1980) Planta 149:292–297

    Google Scholar 

  • Erikson T (1967) Physiol Plant 20:507–518

    Google Scholar 

  • Frost RG, West CA (1977) Plant Physiol 59:22–29

    Google Scholar 

  • Graebe JE (1987) Ann Rev Plant Physiol 38:419–465

    Google Scholar 

  • Grossman K, Rademacher W, Sauter H, Jung J (1984) J Plant Growth Regul 3:197–205

    Google Scholar 

  • Grossman K, Weiler EW, Jung J (1985) Planta 164:370–375

    Google Scholar 

  • Grossman K (1988) In: Maramorosch K, Sato GH (eds) Advances in Cell Culture, Vol 6, Academic Press, pp 89–136

  • Hall RD, Yeoman MM (1987) J Exp Bot 38:1391–1398

    Google Scholar 

  • Hauser C, Kwiatkowski J, Rademacher W, Grossman K (1990) J Plant Physiol 137:201–207

    Google Scholar 

  • Hedden P, Graebe JE (1985) J Plant Growth Regul 4:111–122

    Google Scholar 

  • Hinderer W, Petersen H, Seitz HU (1984) Planta 160:544–549

    Google Scholar 

  • Hinderer W, Seitz HU (1986) Archives Biochem Biophys 246:217–224

    Google Scholar 

  • Ishikura N, Watanabe Y, Teramoto S (1989) Bot Mag Tokyo 103:547–560

    Google Scholar 

  • Martinez AE, Favret EA (1990) Plant Sci 71:35–43

    Google Scholar 

  • Matsumoto T, Nishida K, Noguchi M, Tamaki E (1973) Agric Biol Chem 37:561–567

    Google Scholar 

  • Nakayama I, Kamiya Y, Kobayashi H, Abe H, Sakurai A (1990) Plant Cell Physiol 31:1183–1190

    Google Scholar 

  • Nitsche K, Grossman K, Sauerbrey E, Jung J (1985) J Plant Physiol 118:209–218

    Google Scholar 

  • Noma H, Huber J, Ernst D, Pharis RP (1982) Planta 155:369–376

    CAS  Google Scholar 

  • Mouse M, Kawai J, Yoshitama K (1987) J Plant Physiol 129:81–88

    Google Scholar 

  • Ozeki Y, Komamine A (1986) Plant Cell Physiol 27:1361–1368

    Google Scholar 

  • Sakuta M, Komamine A (1987) In: Constabel F, Vasil IK (eds) Cell Culture and Somatic Cell Genetics of Plants. Academic Press Inc. V.4 pp.97–114

  • SAS/STAT Guide for Personal Computers. Version 6 Edition (1987) Luginbuhl RC, Schlotzhauer SD (eds) SAS Institute, Cary NC

  • Van Tunen AJ, Koes RE, Spelt CE, Van Der Krol AR, Stuitje AR, Mol JNM (1988) EMBO J 7:1257–1263

    Google Scholar 

  • Vogelien DL, Hrazdlina G, Reeves S, Dougall DK (1990) Plant Cell Tissue Organ Culture 22:213–222

    Google Scholar 

  • Wetherell DF (1969) Plant Physiol 44:1734–1737

    Google Scholar 

  • Yamamoto Y, Mizuguchi R, Yamada Y (1982) Theor Appl Genet 61:113–116

    Google Scholar 

  • Zieslin N, Biran I, Halevy AH (1974) Plant Cell Physiol 15:341–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. R. Gould

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilan, A., Dougall, D.K. The effect of growth retardants on anthocyanin production in carrot cell suspension cultures. Plant Cell Reports 11, 304–309 (1992). https://doi.org/10.1007/BF00235087

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235087

Keywords

Navigation